По свойству параллелограмма угол а и угол с будут равны 42 градусам а из свойства четырехугольника, сумма всех углов =360° значит угол б и д вместе будут 276° а по отдельности по 138°, т к противоположные углы параллелограмма равны ответ: 42° и 138°
Сторона ав ромба abcd равна альфа, один из углов равен 60 градусов. через сторону ав проведена плоскость альфа на расстоянии альфа делённая на два от точки d. а) найдите расстояние от точки с до плоскости альфа. б) покажите на рисунке линейный угол двугранного угла dabm, м принадлежит альфа. в) найдите синус угла между плоскостью ромба и плоскостью альфа.решение: ab||cd||ij, dj||ci, т.к. это перпендикуляры к одной плоскости, значит cdji – параллелограмм, значит dj=ci = альфа/2.выберем такую точку е на прямой ав, что ie и ce перпендикулярны ав. тогда угол cei – искомый угол между плоскостями ромба и альфа. из прямоугольного cib получим: bi = sqrt(cb^2-ci^2) = sqrt(3/4альфа)из прямоугольного ceb: ce = cb*sin(60граусов) = альфа*sqrt(3)/2. значит из прямоугольного cie получим sin cei = ci/ce = альфа*2/(2*альфа*sqrt(3)) = 1/sqrt(3), значит угол cei = arcsin(1/sqrt(3))ab||cd||ij, dj||ci, т.к. это перпендикуляры к одной плоскости, значит cdji – параллелограмм, значит dj=ci = альфа/2.выберем такую точку е на прямой ав, что ie и ce перпендикулярны ав. тогда угол cei – искомый угол между плоскостями ромба и альфа. из прямоугольного cib получим: bi = sqrt(cb^2-ci^2) = sqrt(3/4альфа)из прямоугольного ceb: ce = cb*sin(60граусов) = альфа*sqrt(3)/2. значит из прямоугольного cie получим sin cei = ci/ce = альфа*2/(2*альфа*sqrt(3)) = 1/sqrt(3), значит угол cei = arcsin(1/sqrt(3))
Длина одного прямоугольника: х; длина другого: х+10.
Площади прямоугольников относятся, как 2:3, значит: S1/S2=2/3.
Площадь одного прямоугольника: S1=x*b; другого: S2=(x+10)*b.
Подставим в уравнение выше: (x*b)/((x+10)*b)=2/3, x/(x+10)=2/3, x=20.
Значит, длина первого прямоугольника: 20 м; второго — 20+10=30 (м).
Длина большого прямоугольника равна сумме длин тех, что внутри: 20+30=50.
Исходя из формулы площади, которую я написал вначале, вычислим ширину: b=S/a=2000/50=40 (м).
Итак, больший прямоугольник, это тот, у которого больше длина. Длина большего прямоугольника 30 м, а ширина, как и у первоначального прямоугольника, 40 м. 30/40=3/4