т.к Сечением у нас является прямоугольный треугольник ABC . где BC-гипотенуза . а AC-катет (радиус) Из этого по теореме Пифагора найдем AC . т.к треуг прямоугольный то AC=AB(представим как х) ПОлучится уравнение . Х(в квадрате )+Х(в квадрате)=144. из этого получаем 2Х(в квадрате)=144 . Х=корень из 72 т.е 3 корней из 8 . AC=3 корней из 8(радиус)
1 найдем площ основания = Sосн=пr^2= п*(3 корней из 8)^2(в квадрате)=72п. Sосн=72п
2 найдем площ бок поверх Sбок=пrl(где l это гипотенуза BC) = п*3 корней из 8*12=36п корней из 8
3 Sпол = Sбок+Sосн=36п корней из 8 + 72п
Всё
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301