Площадь боковой поверхности наклонной призмы равна сумме площадей ее граней.
Площади двух граней даны в условии. Необходимо найти площадь третьей грани и сложить все площади.
Площадь грани призмы - это площадь параллелограмма, которая равна произведению высоты на сторону, к которой она проведена.
Длина стороны у всех граней одинакова - это длина ребра призмы и равна 5 см.
Высота грани АА1СС1, площадь которой пока еще неизвестна, - это катет ас прямоугольного треугольника abc, образованного высотами граней призмы, так как
угол между гранями АА1СС1 и СС1В1В прямой по условию .
Чтобы найти высоту грани АА1СС1 (катет aс треугольника abc),
нужно найти высоты граней, площади которых известны
(найти катет bc и гипотенузу ac прямоугольного треугольника abc)
Из площади грани СС1В1В =50 см² найдем ее высоту (катет cb):
cb=50:5=10 см
Из площади грани АА1В1В=130 см² найдем ее высоту (гипотенузу аb):
аb=130:5=26 см
Высоту ас третьей грани найдем по теореме Пифагора:
aс²=ab²-cb²
ас=√(676-100)=√576=24 см
Площадь третьей грани равна
24*5=120 см²
Sбоковая=120+130+50=300 см²
углы BОD и СОЕ равны
Объяснение:
Мы можем видеть, что у углов АОЕ и ВОF имеется общая часть, угол ВОЕ.
Так как из условия "Углы АОЕ и ВОF на рисунке 45 равны", и мы вычтем из углов их общую чать, то получим, что угол ЕОF равен углу ВОА.
А так как ОВ и OE — биссектрисы углов АОС и DOF, то можем сделать вывод, что угол DOЕ равен углу СОВ.
Углы BОD и СОЕ можно представить как сумму общей для углов части, угол DOС с соответствующими углами СОВ и DOЕ. И так как угол DOЕ равен углу СОВ, следует, что углы BОD и СОЕ равны.
x это две другие стороны
Тогда (x+9) это один из сторон. Составим уравнение
x+x+(x+9)=45
3x+9=45
3x=45-9
3x=36
x=36:3
x=12
12 это боковые стороны
И 12+9=21 основание