Если отрезки пересекающихся медиан равны, то и медианы равны.
Если медианы треугольника равны, значит, треугольник равносторонний.
Применив теорему о том, что медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, найдем длину медиан:
ОА₁=√8, тогда АО=2√8, а АА₁=3√8.
АА₁=ВВ₁=СС₁=3√8=6√2.
В равностороннем треугольнике медиана является биссектрисой и высотой.
Найдем сторону АС через медиану ВВ₁ по формуле
ВВ₁=(АС√3)\2
6√2=(АС√3)\2
АС√3=12√2
АС=(12√2)\√3=4√6
Найдем площадь АВС
S=1\2 * AC * ВВ₁ = 1\2 * 4√6 * 6√2 = 2√6 * 6√2 = 12√12=24√3 (ед²)
Подробнее - на -
Объяснение:
1)34
2)86
3)28
4)45 60 75
Объяснение:
1) Сумма углов треугольника 180°. Отнимаем от 180 сумму 2 извесных углов(57 и 89) и получаем 34°
2) У равнобедренных треугольников углы при основании оддинаковые. Тоесть 180-(47+47)= 86°
3)Угол противолежащий основанию это угол при вершине. Если от 180 отнять этот угол то получиться 56, это сумма 2 углов при основании. Делим на 2, так как они оддинаковые и получаем 28°
4) Берем 3:4:5 как х
3х+4х+5х=180° потому что сумма углов 180
12х=180
х=180:12
х=15
15*3=45- первый угол
15*4= 60- второй угол
15*5=75- третий угол
Надеюсь все понятно
5х+7=87
5х=80
х=16
ответ АВ=16 АD=18 BC=21 CD=32