Площадь боковой поверхности цилиндра Sбок = 2πRH, где R - радиус, Н – высота цилиндра. Проведем из центра цилиндра до концов хорды радиусы, так как дуга 90°, то радиусы расположены под углом в 90°, ми имеем прямоугольный равнобедренный треугольник, в котором хорда – гипотенуза. Применим теорему Пифагора c^2 = a^2 + b^2, a = b = R, c^2 = 2·R^2, R = c/√2 , = 8√2 /√2 = 8 (см). Теперь найдем высоту. Хорда, диагональ сечения и высота образуют прямоугольный треугольник, в котором хорда и высота – катеты. Найдем катет через другой катет Н = 82·tg 60° = 8√2·√3 = 8√6 (см). Sбок = 2π·8·8√6 = 128√6π
60 градусов = (1х+3х)/2
где 1 и 3 - заданные условием задачи части; х - градусная мера 1 части.
Отсюда
х= 60*2/4 = 30 градусов - это градусная мера меньшей дуги АС
30 градусов *3 = 90 градусов - это градусная мера большей дуги ДВ
Проверяем правильность решения:
На дугу в 30 градусов опирается вписанный угол В, который равен = 1/2 дуги АС равной 30 => угол В = 15
На дугу в 90 градусов опирается угол В = 1/2 дуги ДВ равную 90 =>
угол Д = 45
Следовательно сумма углов треугольника АОВ = 45+15+120 =180, где О центр пересечения хорд
Задача решена
ответ: градусная мера дуг, заключенных между сторонами угла 60 градусов равна 30 и 90 градусам.