Для того, чтобы найти площадь прямоугольника мы должны найти длины сторон прямоугольника.
S = a * b;
Из условия нам известно, что периметр прямоугольника равен 80 см, а отношение сторон равно 2 : 3.
Вводим коэффициент подобия k и записываем длины сторон как 2k и 3k.
P = 2(a + b);
Составляем уравнение применив формулу для нахождения периметра:
2(2k + 3k) = 80;
2k + 3k = 80 : 2;
5k = 40;
k = 40 : 5;
k = 8.
Итак, стороны равны 2 * 8 = 16 см и 3 * 8 = 24 см.
Ищем площадь прямоугольника:
S = a * b = 16 * 24 = 384 см2.
Объяснение:
примерно так
СВ = 3 см - XZ-средняя линия
АВ = 4 см - УZ-средняя линия
СА = 5 см- XУ-средняя линия
Cредняя линия равна половине основания
XZ=СВ/2=3/2=1.5см
УZ= АВ/2=4/2=2см
XУ=СА/2= 5/2=2.5см
Средняя линия в точках пересечения со сторонам делит их пополам т.е:
СУ=УВ=СВ/2=1.5см
АХ=ХВ=АВ/2=2см
СZ=ZA=СА/2=2.5см
Как мы видим из вычислений и рисунка все 4 маленьких треугольника равны по трем сторонам (это третий признак равенства)
Мы знаем все стороны маленьких треугольников, значит, по формуле Герона мы можем найти площадь:
p- полупериметр, a,b,c- стороны
Мы нашли площадь одного маленького треугольника , а он в тетраэдре является гранью. Т.к мы доказали, что маленькие треугольники равны, то площади граней тоже равны