D = 100°,
A = B + 23°, B = A - 23°,
3 × A = C.
Сумма углов четырёхугольника равна 360°.
А + B + C + D = (B + 23°) + (A - 23°) + 3A + 100° = B + 23° + A - 23° + 3A + 100° = B + 4A + 100° = 360°;
B + 4A + 100° = 360°;
B + 4A = 360° - 100° = 260°;
A - 23° + 4A = 260°;
5A = 283°;
A = 56,6°;
B = A - 23° = 56,6° - 23° = 33,6°;
C = 3 × A = 3 × 56,6° = 169,8°.
ответ: А = 56,6°; В = 33,6°; C = 169,8°; D = 100°.
Проверим.
А + B + C + D = 56,6° + 33,6° + 169,8° + 100° = 360°;
A на 23° больше В, 56,6° на 23° больше 33,6°;
А в три раза меньше С, 56,6° в три раза меньше 169,8°.
Всё верно.
правильная треугольная пирамида SABC.
R - середина ребра ВС.
S - вершина.
АВ = 7
SR = 16
Найти:S поверхности - ?
V - ?
Решение:Правильный многоугольник - многоугольник, у которого все углы и стороны равны.
Правильная пирамида - пирамида, у которой основание - правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания, является её высотой.
=> в основании этой правильной треугольной пирамиды лежит равносторонний △АВС.
Рассмотрим △АВС:
АВ = ВС = АС = 7, так как △АВС - равносторонний.
P△АВС = АВ + ВС + АС = 7 + 7 + 7 = 21
Так как △АВС - равносторонний => он ещё и равнобедренный.
BR = RC = 3,5, так как AR - медиана. (Также R - середина ВС, по условию)
Найдём высоту AR в △АВС, по теореме Пифагора:
с² = а² + b²
a = √c² - b²
a = √(7² - 3,5²) = √(49 - (7/2)²) = √(49 - 49/4) = √147/4 = √(147)/2 = 7√(3)/2
Итак, AR = 7√(3)/2
S осн = S △ (в основании)
S осн = S △АВС = 1/2ВС * AR = 1/2 * 7 * 7√(3)/2 = 49√(3)/4 ед.кв.
SR - высота боковой грани, так как SR - апофема.
Апофема - высота боковой грани правильной пирамиды, проведённая из её вершины.
S бок = 1/2Р * SR = 21/2 * 16 = 168 ед.кв.
S поверхности = S осн + S бок = 49√(3)/4 + 168 = 189,21762 ≈ 189 ед.кв.
Точка, на которую опущена высота SO, является серединой правильного треугольника (точка пересечения медиана).Эти медианы делятся в отношении 2:1, считая от вершины.
AR/3 - АО основания AR. (2/3)
=> AR/3 - OR основания AR (1/3)
=> OR = 1/3 * 7√(3)/2 = 7√(3)/6
Рассмотрим △SRO:
△ASO - прямоугольный, так как SO - высота.
Найдём высоту SO, по теореме Пифагора:
с² = а² + b²
a = √(c² - b²)
a = √(16² - (7√(3)/6)²) = √(256 - 49/12) = √(9069)/6
Итак SO = √(9069)/6
V = 1/3S осн * SO
V = 1/3 * 49√(3)/4 * √(9069)/6= 49√(3023)/24 ед.кб.
ответ: ≈ 189 ед.кв.; = 49√(3023)/24 ед.кб.