Для двух точек пространства A(3;1;-4) и B(2;4;3) координаты точки M(x;y;z) , которая делит отрезок в отношении λ=1/4, выражаются формулами:
Xm=(Xa+λ*Xb)/(1+λ),
Ym=(Ya+λ*Yb)/(1+λ),
Zm=(Za+λ*Zb)/(1+λ).
Найдем эти координаты:
Xm = (3+(1/4)*2)/(1+(1/4)) = (14/4):(5/4) = 14/5 = 2,8;
Ym = (1+(1/4)*4)/(1+(1/4)) = 2:(5/4) = 8/5 = 1,6;
Zm = (-4+(1/4)*3)/(1+(1/4)) = -(13/4):(5/4) = -13/5 = -2,6.
ответ: М(2,8:1,6:-3).Даны точки А(3;0) и точка B(-3;-1). Найти точку C, делящую AB в отношении 1:3.
в.отв:
-С(1;2)
-С(-4;3)
-С(4;1)
-С(0;-
Объяснение:
3)
Сумма углов в треугольнике равна 180°
∠ВАС=180°-∠АВС-∠АСВ=180°-100°-50°=30°
S∆ABC=1/2*AB*AC*sin30°=1/2*8*14*1/2=
=28ед²
ответ: 28 ед²
4)
∆АКВ- прямоугольный, равнобедренный
(∠ВКА=90°; ∠ВАК=∠АВК=45°).
АК=КВ=5 ед.
Так как трапеция равнобокая, по условию, то АК=МD=5ед.
КМ=КD-MD=8-5=3ед
КМ=ВС;
AD=KD+AK=8+5=13ед.
S=BK*(BC+AD)/2=5*(3+13)/2=5*16/2=40ед²
ответ: 40ед²
5)
∆АВС-прямоугольный.
ВС- гипотенуза
АВ и ВС - катеты
По теореме Пифагора найдем
АВ²=ВС²-АС²=13²-5²=169-25=144
АВ=√144=12 ед.
Площадь прямоугольного треугольника равна половине произведения двух катетов
S=1/2*AB*AC=12*5/2=30 ед²
ответ: 30ед²