Обозначим (начиная с нижнего левого острого угла) по часовой стрелке ABCD. Тогда AD = 12 см и AB=8 см Высоты из угла В - на AD - BE и на CD - BF <EBF = 60 BE - высота, т. е. BE перпендикулярно AD, значит BD перпендикулярно и BC, т.к. BC параллельно AD, следовательно, < CBE - прямой и <CBF =90 - <EBF =90-60 =30 BF - высота, она перпендикулярна CD, т.е. треугольник BFC - прямоугольный, значит <BCF = 90 - <CBF = 90 -30 =60 Но <A = < C, значит <A =60 и можем найти высоту BE из треугольника AEB BE=AB* cos <A BE = 8*cos 60 = 8* корень(3)/2 = 4*корень(3) площадь параллелограмма равна произведению основания на высоту
S = AD*BE = 12*4*корень(3) = 48 * корень(3) кв. см
Обозначим (начиная с нижнего левого острого угла) по часовой стрелке ABCD. Тогда AD = 12 см и AB=8 см Высоты из угла В - на AD - BE и на CD - BF <EBF = 60 BE - высота, т. е. BE перпендикулярно AD, значит BD перпендикулярно и BC, т.к. BC параллельно AD, следовательно, < CBE - прямой и <CBF =90 - <EBF =90-60 =30 BF - высота, она перпендикулярна CD, т.е. треугольник BFC - прямоугольный, значит <BCF = 90 - <CBF = 90 -30 =60 Но <A = < C, значит <A =60 и можем найти высоту BE из треугольника AEB BE=AB* cos <A BE = 8*cos 60 = 8* корень(3)/2 = 4*корень(3) площадь параллелограмма равна произведению основания на высоту
S = AD*BE = 12*4*корень(3) = 48 * корень(3) кв. см
∠1 и ∠3 — вертикальные, следовательно, они равны. ∠2 и ∠4 — вертикальные, следовательно, они равны. ∠1 и ∠2 — смежные углы, ∠1 + ∠2 = 180°. ∠4 и ∠3 — смежные углы, ∠3 + ∠4 = 180°. Получаем, что ∠1 + ∠2 + ∠3 + ∠4 = 360°.
Пусть х - 1 часть, тогда больший угол 7х.
Составим уравнение
7х+х+7х+х=360
16х=360
х=22,5
∠1=∠3 = 22,5
∠2=∠4=157,5