опустим из тупого угла трапеции высоту на большее основание. получим прямоугольный треугольник с гипотенузой=диагонали трапеции, один из острых углов которого 30° из условия . высота, как катет, противолежащий углу 30°, равна половине диагонали и равна 2 см боковая сторона равна 2√2, отсюда отрезок, который высота отрезала от большего основания, равен 2 см, так как боковая сторона равна диагонали квадрата со стороной 2 см (по формуле диагонали квадрата а√2). так как образовался равнобедренный прямоугольный треугольник, острые углы в нем 45°, и поэтому второй угол при большем основании равен 45°. отсюда тупой угол при меньшем основании равен 180-45=135°.
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
(х-х1)/(х2-х1) = (у-у1)/(у2-у1) = (z-z1)/(z2-z1)
подставляем координаты точек В и С
(х-4)/(-2-4) = (у-8)/(-4-8) = (z-6)/(-6-6)
(x-4)/(-6) = (y-8)/(-12) = (z-6)/-12
подставляем первые две координаты в наше ур-ие, получаем:
-2/(-6) = -4/(-12) = (z-6)/-12 откуда
(z-6)/-12 = 1/3
z-6=-4
z= 2