1. а) 176 см²; б) 4 см.
2. 113,4 см²
3. 7,8 см.
4. 1) 5 см; 2) 10 см; 3) 8 см.
Объяснение:
1. Площадь параллелограмма равна S=ah.
a) S=16*11=176 см ².
б) S=ah; a=S/h=102/25.5=4 см .
***
2. Проведем высоту ВЕ⊥AD.
Из ΔАВЕ ВЕ/АВ=Sin30°, откуда ВЕ=14*(1/2)=7 см.
S=AD*BE=16.2*7= 113.4 см².
***
3. S=ah, где а=9 см, b =2.6 см; S=9*2.6= 23.4 см².
S=ah, где а=3. Найдем h.
3h=23.4;
h=23.4/3;
h=7.8 см.
Доп. вопрос: Не зависит, главное, чтобы она была правильной и применима к данной фигуре.
***
4. 2h=a;
S=ah;
H=2(a+b).
S=2h*h=50;
2h²=50;
h²=25;
h=√25=±5; (-5 - не соответствует условию).
1) h=5 см .
а=2h=2*5=10 см.
2) а=10 см.
Р= 2(a+b);
2(10+b)=36;
10+b=18;
3) b=8 см.
Номер 1
Можно даже не вычислять,чему равны углы 1;2;3;
Два угла 30 градусов называются соответственными,если при пересечении двух прямых секущей соответственные углы равны,то прямые параллельны
<1=<30=30 градусов,как накрест лежащие,вообще-то-смотрятс каким из двух углом сравнивать
<1+<2=180 градусов,как односторонние
<2=180-30=150 градусов
Если при пересечении двух прямых секущей односторонние углы в сумме равны 180 градусов,то прямые параллельны
<3=<2=150 градусов,как вертикальные
Номер 2
<20=<2=<20 градусов,как вертикальные
Если угол 3 в 8 раз больше угла 2,то
<3=20•8=160 градусов
<3=20+160=180 градусов
Если при пересечении двух прямых секущей односторонние углы в сумме равны 180 градусов,то прямые параллельны
<4=<3=160 градусов,как накрест лежащие
<5=<2=20 градусов
Объяснение:
sin∠SAC = h/3
sin∠SBC = h/2, значит ∠SAC < ∠SBC.
Обозначим ∠SAC = α, тогда ∠SBC = 2α.
h = 3sinα
h = 2sin2α, получаем уравнение:
3sinα = 2sin2α
3sinα - 2sin2α = 0
3sinα - 4sinα·cosα = 0 (так как sin2α = 2sinα·cosα)
sinα·(3 - 4cosα) = 0
sinα = 0 или 3 - 4cosα = 0
α = 0 - не подходит, cosα = 3/4
sinα = √(1 - cos²α) = √(1 - 9/16) = √7 / 4
h = 3√7/4 дм
Найдем катеты основания:
b = 3cosα = 9/4 дм
a = 2cos2α = 2(2cos²α - 1) = 2(2·9/16 - 1) = 1/4 дм
Sосн = 1/2 ab = 1/2 · 1/4 · 9/4 = 9/32 дм²
V = 1/3 Sосн·h = 1/3 · 9/32 · 3√7/4 = 9√7/128 дм³