ответ: ∠DBE=15*.
Объяснение:
"ABCD-это ромб, а точка E находится на стороне DC так, что(<BEC) = 55°. Если m(<A)=100°, найдите m(<DBE).
Треугольник DВЕ - равнобедренный (углы у основания равны).
∠А+∠ABD+∠BDA=180*;
∠DBA=∠BDA=(180*-100*)/2=40*;
***
В треугольнике BDE ∠BDE=40*, a ∠BED=180*-55*=125*.
Значит ∠DBE=180*-(40*+125*) =15*.
ответ: ∠DBE=15*.
***
На английском:
The triangle DBE is isosceles (the angles at the base are equal).
∠A+∠ABD+∠BDA=180*;
∠DBA=∠BDA=(180*-100*)/2=40*;
***
In the triangle BDE ∠BDE=40*, a ∠BED=180*-55*=125*.
Means ∠DBE=180*-(40*+125*) =15*.
Answer: ∠DBE=15*.
75 см²
Объяснение:
Прямоугольные треуг-ки ВНС и АН1С подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае углы АН1С и ВНС прямые, а угол С - общий. Для подобных треугольников можно записать отношение сходственных сторон:
ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда
CH1=6CH:5
В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС:
АС²=AH1²+CH1²
Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид:
СН1=3АС:5.
Это значение для СH1 будем использовать в вычислении по теореме Пифагора:
АС²=12² + 9AC²/25
AC² - 9AC²/25=144
16AC²=3600
AC² = 225
AC=15 см
S ABC = 1/2AC*BH=7,5*10=75 см²