Втреугольнике abc проведена медиана bm и продолжена на свою длину mh за точку m. найдите периметр четырёхугольника abch если периметр трtугольника abc равен 42 см, am=7 см
Признак параллелограмма:(один из трех))) Если диагонали 4-угольника точкой пересечения делятся пополам, то этот 4-угольник -- параллелограмм. М --середина АС по условию М --середина ВН по построению... ---> АВСН -- параллелограмм. Р(АВС) = 42 АВ+ВС = 42-7*2 = 28 Р(АВСН) = 2*28 = 56
Задача решается двумя Графически и алгебраически. приложение №1): Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см. Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см. Радиус 5/2=2,5 см.
приложение №2): Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника. Радиус описанной окружности - R=a/2sinα , где а - сторона треугольника, α - противолежащий угол. Рассматриваем треугольник НВС, где Н точка пресечения диагоналей. Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β). R=СД/2sinβ=2/sinβ; R=АВ/2sin(90-β)=3/2cosβ. Делим одно выражение на другое. 3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3 R=2/sin(atgβ)=2.499999=2.5 см.
Если диагонали 4-угольника точкой пересечения делятся пополам,
то этот 4-угольник -- параллелограмм.
М --середина АС по условию
М --середина ВН по построению... ---> АВСН -- параллелограмм.
Р(АВС) = 42
АВ+ВС = 42-7*2 = 28
Р(АВСН) = 2*28 = 56