а) Основание равнобедренного треугольника АВС сторона АС, следовательно, АВ=ВС. По условию АD=CE, по свойству углов равнобедренного треугольника ∠ВАD=∠ВСE, ⇒ ∆ ВАD=∆ ВЕC по двум сторонам и углу между ними. Все сходственные элементы равных треугольников равны. ⇒ BD=BE. Треугольник DBE - равнобедренный.
V=S(осн)*h/3 в основании квадрат-необходимо найти сторону основания, и высоту пирамиды На чертеже диагональное сечение-ΔBDS, по условию он прямоугольный(<S=90) и равнобедренный(потому что пирамида правильная) Его S=12=a^2/2(a-боковое ребро пирамиды), значит а=√24=2√6 DB-гипотенуза прямоугольного треугольника со стороной а, поэтому DB^2=2a^2=2*24=48; DB=4√3 DB-диагональ квадрата в основании, поэтому сторона основания AB=DB/√2=4√3/√2=2√6 S(осн)=AB^2=(2√6)^2=24 Из ΔDSO найду h, h^2=a^2-(DB/2)^2=24-(2√3)^2=24-12=12 h=√12=2√3 V=24*2√3/3=16√3
V=S(осн)*h/3 в основании квадрат-необходимо найти сторону основания, и высоту пирамиды На чертеже диагональное сечение-ΔBDS, по условию он прямоугольный(<S=90) и равнобедренный(потому что пирамида правильная) Его S=12=a^2/2(a-боковое ребро пирамиды), значит а=√24=2√6 DB-гипотенуза прямоугольного треугольника со стороной а, поэтому DB^2=2a^2=2*24=48; DB=4√3 DB-диагональ квадрата в основании, поэтому сторона основания AB=DB/√2=4√3/√2=2√6 S(осн)=AB^2=(2√6)^2=24 Из ΔDSO найду h, h^2=a^2-(DB/2)^2=24-(2√3)^2=24-12=12 h=√12=2√3 V=24*2√3/3=16√3
а) Основание равнобедренного треугольника АВС сторона АС, следовательно, АВ=ВС. По условию АD=CE, по свойству углов равнобедренного треугольника ∠ВАD=∠ВСE, ⇒ ∆ ВАD=∆ ВЕC по двум сторонам и углу между ними. Все сходственные элементы равных треугольников равны. ⇒ BD=BE. Треугольник DBE - равнобедренный.
б) Угол ВЕD+угол ВЕС=180° ( смежные). ⇒ равные углы равнобедренного треугольника DBE ∠ ВDE=∠ВЕС=180°-115°=65°