дана трапеция ABCD
EM - средняя линия
пересекает диагонали в точках К и N
AC и BD - диагонали
из свойств средней линии трапеции: EM||BC||AD
CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.
AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.
Следовательно: AK=CK и DN=BN
можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.
1) угол 5 = угол 8 = угол 1 = угол 4 = 124 градуса
угол 6 = угол 7 = угол 2 = угол 3 = 180-124=56 градусов
2) угол 2 = угол 3 (если смотреть по первому рисунку, на этом рисунке обозначеия нет) = 180 — угол 1
т.е. угол 6 + угол 1 = 180
если сумма внутренних односторонних углов равна 180 градусов, значит прямые параллельны
3) угол 1 = угол 4 (если смотреть номера по первому рисунку) — они вертикальные
угол 1 = угол 4, значит угол 4+угол 2=180 градусов
если сумма внутренних односторонних 180, значит а и b параллельны
угол 2 = угол 3 — соответствующие
если соответствующие углы равны, значит b и с параллельны
т.к. a параллельна b и с параллельна b, значит а параллельна с
т.к. в параллелограме противоположные стороны равны, а Р= 56, мы можем найти стороны, 10см 10 см 56-20=36:2=18см 18см
проведём высоту, получиться прямоугольный треугольник с углом 30 градусов, катет в прямоугольном треугольнике лежащий против угла в 30 градусов равен половине гипотенузы, это катет высота он равен 5
S=1/2аh(а-основание, h-высота)
S=1/2*5*18=45