Дано: конус r = 6 см h = 8 см знайти: 1) твірну; 2) площу осьового перерізу; 3)площу основи; 4) кут між твірною і висотою; 5) відстань від центра основи до твірної.
Радиус описанной вокруг прямоугольника окружности равен 13. Диаметр окружности, следовательно, равен 26, и является диагональю данного по условию прямоугольника. Обозначим вершины прямоугольника АВСД. Тогда ВД - его диагональ и делит прямоугольник на два равных прямоугольных треугольника -АВД и ВСД. Рассмотрим треугольник ВСД. Гипотенуза равна 13, и вспоминается одна из троек Пифагора с отношением его сторон сторон прямоугольного треугольника 5:12:13. Отношение сторон этого треугольника может быть таким же: ВС:СД:ВД=5:12:13 Тогда его гипотенуза 26, катеты 10 и 24, И площадь прямоугольника АВСД= 10*24=240. Всё сходится. Но не всегда вспоминаются эти тройки, да и отношение сторон может быть иным. Решение. Площадь треугольника ВСД равна половине площади прямоугольника АВСД и равна 120. Проведем в этом треугольнике высоту СН. Площадь ВСД=СН*26:2 120*2=СН*26 СН=240/26=120/13 ВС - сторона прямоугольника = катет треугольника ВСН. Найти его можно из этого треугольника по т.Пифагора. Для того, чтобы найти ВН, воспользуемся правилом: Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой; СН²=ВН*НД (120/13)²=ВН*(26-ВН) Обозначим ВН=х, тогда НД=26-х Подставим в уравнение высоты эти значения: 1400/169=26х-х² Домножим обе части уравнения на 169, чтобы избавиться от дроби: 1400=4394х-169х² 169х²-4394х+14400=0 Решим квадратное уравнение: Дискриминант равен: D=b²-4ac=-43942-4·169·14400=9572836 х=(-b±√D):2а х1=-(-4394)+√9572836):2*169= (4394+3094):338=7288/338=288/13 Второй корень находить нет необходимости. Найдем катет ВС. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой (ВД) и отрезком (ВН) гипотенузы, заключенным между катетом и высотой. ВС²=ВН²+СН² ВС²=(288/13)²+(120/13)² ВС²=576 ВС=24 Из площади прямоугольника найти вторую его сторону не составит труда. АВ=240:24=10 Периметр прямоугольника Р=2(АВ+ВС)=2*(24+10)=68
Пусть большой ∆ - это АВС, медиана - это отрезок АМ, высота - отрезок АV, биссектриса при моём решении не потребуется. По определению высоты в ∆ АVМ угол AVM равен 90°, при этом мы знаем, что угол между высотой и биссектрисой (это угол МAV) равен 10°. Тогда получаем, что угол АМV равен 90°-10°=80° (по теореме о сумме углов ∆). Значит, угол ВМА равен 100° как смежный с углом АМV. Из того, что в прямоугольном ∆ медиана, проведённая к гипотенузе, равна половине гипотенузы, делаем вывод, что ∆ ВМА равнобедренный (по определению). Соответственно, угол МВА равен углу МАВ и равен (180°-100°):2= 40°. Угол МВА - это угол АВС в большом прямоугольном ∆. Тогда угол ВАС равен 90°- 40°=60°. ответ: углы ∆ равны 40° и 60°.