Объяснение:
Задача имеет 2 решения.
1. Наклонные проведены по одну сторону от перпендикуляра.
Имеем прямую АН, ВН⊥АН, ВН=8 см, ВС=10 см, АВ=18 см. Найти АС.
ΔВСН - прямоугольный, ВН=8 см, ВС=10 см, тогда СН=6 см (египетский треугольник).
По теореме синусов sin∠ВСН=8\10, ∠ВСН=54°.
∠АСВ=180-54=126°.
Найдем ∠А из ΔАВС.
sin126\АВ=sinА\ВС; sinА=0,809*10:18=0,4494; ∠А=27°
∠АВС=180-126-27=27°, значит,ΔАВС - равнобедренный и АС=ВС=10 см. ответ 10 см.
2. Наклонные проведены по обе стороны от перпендикуляра.
Дано: АС⊥ВН; ВН=8 см, АВ=18 см, ВС=10 см. Найти АС.
В ΔВСН СН=6 см (египетский треугольник), АН найдем по теореме Пифагора:
АН=√(АВ²-ВН²)=√(324-64)=√260≈16,12 см.
АС=16,12 + 6 = 22,12 см.
ответ: 22,12 см.
1. AB=(0-(-5); 7-(-2); -2-1), т.е их координат точки В вычитаем поочередно координаты точки А
получаем АВ(5;9;-3)
DA=(4-(-5);-2-(-2);-2-1)
DA=(9;0;-3)
со след. векторами аналогично
2. DA=(9;0;-3)
Для того, чтобы разложить по координатным векторам вектор DA мы возводим в квадрат его координаты, складываем
и берем их под корень. т.е.:
/DA/=√81+0+9=√90≈9,5
DA=9i+0j-3k
3.СВ+DА=складываешь координаты, которые найдены в 1 пункте
и т.д.
5.Координаты середины отрезка равны полусумме соответствующих координат концов отрезка. т.е. координаты отрезка ВС делишь на 2.
б) Найдите угол между этой плоскостью и плоскостью основания АВС.
Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ.
Точки пресечения - это Д и Е.
Примем длину отрезка АК за 1.
Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3.
Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1.
Угол ЕАД равен 60 градусов (по заданию).
По теореме косинусов
Находим гипотенузы в треугольниках АКД и АКЕ.
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов).
Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти.
Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД.
Находим высоты в треугольниках АЕД и КЕД по формуле:
АЕ ДЕ АД p 2p S =
1 0.8694729 0.5773503 1.2234116 2.446823135 0.25
haе hде hад
0.5 0.57506 0.86603
КЕ ДЕ КД p 2p S =
1.4142136 0.869473 1.154701 1.719194 3.43839 0.501492
hке hде hкд
0.7092 1.15356 0.86861.
Отношение высот hде и hде - это косинус искомого угла:
cos α = 0.57506 / 1.15356 = 0.498510913.
ответ: α = 1.048916149 радиан = 60.09846842°.