М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ksussshhhaaa
ksussshhhaaa
07.02.2022 04:52 •  Геометрия

Дано: треугольник abc, угол c=90 градусов, cd перпендикулярно ab, ac=15 см, ad=9 см. найти: ab.

👇
Ответ:
DashaLOVE04
DashaLOVE04
07.02.2022
Смотри во вложении ...
Дано: треугольник abc, угол c=90 градусов, cd перпендикулярно ab, ac=15 см, ad=9 см. найти: ab.
4,4(6 оценок)
Открыть все ответы
Ответ:
kseniamurzakova
kseniamurzakova
07.02.2022

(см. объяснение)

Объяснение:

Поскольку пирамида правильная, то BH - медиана, биссектриса и высота треугольника ABC, то есть верно, что BH\perp AC. Проведем прямую ME||BH. Тогда ME\perp AC. Пусть CP другая медиана треугольника ABC. Пусть медианы этого треугольника пересекаются в точке O. Тогда из-за того, что пирамида правильная, SO - это ее высота, т.е. SO\perp(ABC), а значит и любой прямой в этой плоскости. Пусть ME\cap CP=J. Проведем через точку J прямую параллельную SO, которая пересечет SC в точке I. Тогда IJ\perp(ABC), а значит и любой прямой в этой плоскости. Соединим точки M, I и E. Получим плоскость (MIE). Покажем, что AC\perp(MIE). AC\perp ME и AC\perp IJ, и ME\cap IJ=J. Тогда задача сводится к нахождению площади треугольника MIE. Будем искать ее, как S=\dfrac{1}{2}ME\times IJ. Из подобия треугольников следует, что ME=\dfrac{4BH}{7},\;=\;ME=6. Из подобия треугольников IJ=\dfrac{4SO}{7},\;=\;IJ=4. Подставив найденное в формулу выше, получим S=\dfrac{1}{2}\times 6\times 4=12. Таким нами образом было получено, что искомая площадь равна 12.

Задание выполнено!


Сторона основания правильной треугольной пирамиды SABC имеет длину 7√3.Высота пирамиды равна 7. На с
4,5(17 оценок)
Ответ:

Объяснение:

Как я понял, нам нужно найти длину окружности, вписанной в четырёхугольник BMDN. Я её изобразил на рисунке, хотя этого можно было и не делать. Обозначим длину этой окружности буквой l. Её нам нужно найти.

И давайте сразу из периметра найдём сторону ромба, она нам пригодится в решении. Обозначим для удобства сторону ромба буквой а. а=30/4=7,5.

Во-первых, проведём диагональ BD, которая разделяет угол В на два равных угла. Тогда ∠DBC = arctg2. Давайте теперь найдём косинус этого угла.

DBC = arctg2 = tgDBC=2\\tgDBC = \frac{sinDBC}{cosDBC}=\frac{\sqrt{1-cos^2DBC} }{cosDBC} \\2=\frac{\sqrt{1-cos^2DBC} }{cosDBC}\\2cosDBC=\sqrt{1-cos^2DBC} \\4cos^2DBC=1-cos^2DBC\\5cos^2DBC=1=cos^2DBC=\frac{1}{5}=cosDBC=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}

Тут может возникнуть вопрос по поводу знака косинуса. Да, косинус может быть отрицательным, но взгляните на наш ромб: угол, косинус которого мы искали, является острым. А если мы посмотрим на единичную окружность, то отрицательные косинусы могут быть лишь у углов 2 и 3 четвертей, т.е. это уже не острые углы. Значит мы берём именно такое положительное значение косинуса.

Треугольник BCD является равнобедренным, поэтому воспользуемся формулой для нахождения основания равнобедренного треугольника.

BD=2a*cosDBC=\frac{15\sqrt{5} }{5} =3\sqrt{5}

Вообще я сейчас пытаюсь найти высоту ромба, и чтобы её найти

нам ещё нужно найти синус угла В. Давайте найдём его:

B=2arctg2 = tgB=tg2DBC=\frac{2tgDBC}{1-tg^2DBC}=\frac{2*2}{1-4}=-\frac{4}{3} \\tgB=\frac{sinB}{cosB}=\frac{sinB}{\sqrt{1-sin^2B} }\\-\frac{4}{3}=\frac{sinB}{\sqrt{1-sin^2B}}\\\frac{16}{9}=\frac{sin^2B}{1-sin^2B} \\16-16sin^2B=9sin^2B\\25sin^2B=16\\sin^2B=\frac{16}{25}=sinB=\frac{4}{5}

Теперь находим высоту ромба через синус тупого угла и меньшую диагональ:

BM=a*sinB=7,5*\frac{4}{5}=6

Из прямоугольного треугольника BMD найдём катет MD по теореме Пифагора:

MD=\sqrt{BD^2-BM^2}=\sqrt{45-36}=\sqrt{9}=3

Давайте взглянем на треугольники BMD и NBD. Докажем их равенство. Эти треугольники будут равны, т.к. высоты ромба, проведённые из тупого угла равны, BD - общая для обоих треугольников, а диагональ ромба разделяет угол MBN пополам. Проще говоря, они равны по двум сторонам и углу между ними. Зачем нам это нужно? Это нужно для того, чтобы найти площадь и периметр четырёхугольника, в который вписана окружность. То есть, мы найдём площадь одного треугольника, умножим её на два, и получим площадь данного четырёхугольника. Также поступим и с периметром: найдём сумму катетов и умножим её на 2. Вообще для нахождения радиуса окружности нам нужен полупериметр, поэтому я периметр ещё поделю на 2. Ищем площадь и полупериметр четырёхугольника:

S_{BMD}=\frac{BM*MD}{2}=\frac{6*3}{2}=9\\S_{BMDN}=9*2=18\\P_{BMDN}=2(BM+MD)=2*9=18 = p_{BMDN}=\frac{18}{2} =9

Теперь найдём радиус вписанной окружности по формуле:

r=\frac{S_{BMDN}}{p_{BMDN}}=\frac{18}{9} =2

И теперь находиv длину окружности по формуле:

l=2\pi r=2*2*\pi =4\pi


решить: в ромбе ABCD периметр составляет 30 см., а тупой угол при вершине B равен 2arctg2. Из вершин
4,8(9 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ