Прямая может либо лежать в плоскости, либо быть параллельной плоскости, либо пересекать плоскость.
Докажем от противного: пусть прямая m не параллельна пл-сти b тогда прямая m либо лежит в плоскости b либо пересекает ее. из условия сказано, что прямая a лежит в плоскости a, тогда остается 1 случай : прямая m пересекает плоскость b. поскольку прямая m лежит в пл-сти а и при этом пересекает пл-сть b - это возможно только в том случае, если пл-сти a и b -пересекают, но по условию -они параллельны. Мы пришли к противоречию. Отсюда следуем, что прямая m параллельна пл-сти b
Призма АВСДА1В1С1Д1, в основании квадрат, АС=ВД=2*корень2, АВ=ВС=СД=АД=корень(АС в квадрате/2)=корень(8/2)=2, О-пересечение диагоналей, АС1-диагональ призмы, проводим ОК параллельно АС1 на СС1,
треугольник ВКД-сечение призмы, ОК-высота треугольника равнобедренного ВКД, ОК=2*площадь сечения/ВД=2*2*корень3/(2*корень2)=корень6, треугольник АС1С прямоугольный, ОК-средняя линия треугольника=1/2АС1, АС1=2*корень6, треугольник АС1С прямоугольный , СС1=корень(АС1 в квадрате-АС в квадрате)=корень(24-8)=4 - высота призмы
площадь полная=2*площадь основания+площадь боковая=2*АД*СД+периметр*высота = 2*2*2+4*2*4=40
Призма АВСДА1В1С1Д1, в основании квадрат, АС=ВД=2*корень2, АВ=ВС=СД=АД=корень(АС в квадрате/2)=корень(8/2)=2, О-пересечение диагоналей, АС1-диагональ призмы, проводим ОК параллельно АС1 на СС1,
треугольник ВКД-сечение призмы, ОК-высота треугольника равнобедренного ВКД, ОК=2*площадь сечения/ВД=2*2*корень3/(2*корень2)=корень6, треугольник АС1С прямоугольный, ОК-средняя линия треугольника=1/2АС1, АС1=2*корень6, треугольник АС1С прямоугольный , СС1=корень(АС1 в квадрате-АС в квадрате)=корень(24-8)=4 - высота призмы
площадь полная=2*площадь основания+площадь боковая=2*АД*СД+периметр*высота = 2*2*2+4*2*4=40
Докажем от противного:
пусть прямая m не параллельна пл-сти b
тогда прямая m либо лежит в плоскости b либо пересекает ее.
из условия сказано, что прямая a лежит в плоскости a, тогда остается 1 случай : прямая m пересекает плоскость b.
поскольку прямая m лежит в пл-сти а и при этом пересекает пл-сть b - это возможно только в том случае, если пл-сти a и b -пересекают, но по условию -они параллельны. Мы пришли к противоречию. Отсюда следуем, что прямая m параллельна пл-сти b