Пусть ABC - треугольник. М - середина АВ, N - середина ВС, К - середина АС. Докажем, что треугольники AMK, BMN, NKC, MNK равны. Так как M,N,K - середины, то AM = MB, BN = NC, AK = KC.
Используем свойство среднее линии: MN = 1/2 * AC = 1/2 * (AK + KC) = 1/2 * (AK + AK) = AK Аналогично MK = NC, NK = AM. Тогда в треугольниках AMK, BMN, NKC, MNK AM = BM = NK = NK AK = MN = KC = MN MK = BN = NC = MK
Значит треугольники равны по трем сторонам, что и требовалось доказать.
1)Окружность вписана в треугольник, если она касается всех его сторон. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности. Центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника. От этой точки нужно провести перпендикуляр к любой стороне и это расстояние будет радиусом вписанной в треугольник окружности. 2) Окружность называется описанной вокруг треугольника, когда все его вершины лежат на окружности. Центром описанной окружности является точка пересечения срединных перпендикуляров к сторонам треугольника. Радиусом такой окружности будет расстояние от этого центра до вершин треугольника. 3) Вневписанная окружность — окружность, касающаяся одной стороны треугольника и продолжения двух других его сторон.Центр вневписанной окружности лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах. Радиусом ее будет отрезок перпендикуляра, проведенного из центра окружности к стороне треугольника или к ее продолжению.Вневписанных окружностей у треугольника может быть 3 - к каждой стороне.
А) BADC - пирамида 1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||) ч.т.д б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC А отношение площадей подобных ▲ равно квадрату коэффициенту подобия. S1:S2=k^2 S2=S1:k^2 S2=48:2^2=12см^2 ответ:12 см^2
Пусть ABC - треугольник. М - середина АВ, N - середина ВС, К - середина АС.
Докажем, что треугольники AMK, BMN, NKC, MNK равны.
Так как M,N,K - середины, то
AM = MB, BN = NC, AK = KC.
Используем свойство среднее линии:
MN = 1/2 * AC = 1/2 * (AK + KC) = 1/2 * (AK + AK) = AK
Аналогично MK = NC, NK = AM.
Тогда в треугольниках AMK, BMN, NKC, MNK
AM = BM = NK = NK
AK = MN = KC = MN
MK = BN = NC = MK
Значит треугольники равны по трем сторонам, что и требовалось доказать.