а) У ромба все стороны равны из этого следует что P=a*4; 32см :4=8см
ответ: стороны ромба 8см
б) 2( x + 2x) = 24 ; 6x = 24 ; x = 4 ; a = 4одна сторона; b = 8 другая сторона.
в) Средняя линия треугольника равна половине соответствующей стороны, значит сторона равна 14см.
г) Пусть одна сторона будет х, а другая х+5, тогда: 2·(х+х+5)=50
2·(2х+5)=50 ; 4х+10=50 ; 4х=50-10 ; 4х=40 ; х=40:4 ; х=10
Значит одна сторона х=10 см, а другая х+5=10+5=15 см.
д) Делим ромб диагоналями на 4 равных прямоугольных треугольника.Т.к диагонали делят углы ромба пополам то в этих треугольничках один из углов 60:2=30*.Катет лежащий против угла в 30 градусов равен половине гепотенузы (16:4=4) => половина меньшей диагонали 4:2=2 => вся меньшая диагональ 2*2=4 см.
e) Средняя линии трапеции равна сумме длин двух оснований=> 10+22/2=32/2=16 см
ж) В прямоугольнике диагонали равны 18:2=9. ответ: Диагонали по 9 см.
и) Периметр 1*4=4 см; Площадь 1*1=1 см2
к) У квадрата 4 стороны. По свойству квадрата они равны между собой, поэтому: 64/4= 16 см - каждая сторона площадь квадрата равна произведению двух его сторон, поэтому площадь квадрата = 16*16=256 см2
BC и AD лежат в разных плоскостях, не параллельны и не пересекаются. они – скрещивающиеся прямые.
Углом между скрещивающимися прямыми называется угол между двумя прямыми, параллельными им и проходящими через произвольную точку.
Рассмотрим ∆ ВАD и CAD.
АВ=АС по условию. АD - общая сторона, углы между равными сторонами равны. Следовательно. эти треугольники равны по 1-му признаку равенства треугольников. ⇒ ВD=CD и
∆ ВСD- равнобедренный. Его высота DH перпендикулярна ВС и делит ВС пополам ( свойство). Н - середина ВС, ⇒ АН - высота равнобедренного ∆ АВС. Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей. ⇒ Плоскость АНD перпендикулярна плоскости АВС и DВС. Отсюда угол между АD и ВС прямой.
Или:
Проведем через вершину D прямую МК параллельно ВС.
DH перпендикулярен ВС, значит, перпендикулярен и параллельной ВС прямой МК.
АD - наклонная, HD содержит её проекцию на плоскость ВDC, По т. о 3-х перпендикулярах АD перпендикулярна МК и перпендикулярна ВС. Угол между прямыми АD и ВС равен 90°