По теореме синусов a/синусα=2R, a в правильном треугольнике углы по 60 градусов, тогда а/√3/2=2×18, тогда а=18√ 3 Находим площадь треуг.S=1/2×а×а×sinα, S=1/2×18√3×18√3×√3÷2=243√3 r=S÷P= 243√3÷(3×18√3)=4,5 Радиус равен 4,5 см.
Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла. Катеты — стороны, лежащие напротив острых углов. Катет, лежащий напротив угла, называется противолежащим (по отношению к углу ). Другой катет, который лежит на одной из сторон угла, называется прилежащим. Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе. Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе. Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему. Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу. Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу).
Вспоминаем свойство диагоналей прямоугольника: Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам. Значит ΔАОД и ΔВОА - равнобедренные, и ∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40° АЕ=ЕВ, т. к. по условию Е - середина АВ. То есть в ΔВОА ОЕ - медиана. Далее вспоминаем следующее свойство равнобедренного треугольника: Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой. Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит: ∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
Находим площадь треуг.S=1/2×а×а×sinα, S=1/2×18√3×18√3×√3÷2=243√3
r=S÷P= 243√3÷(3×18√3)=4,5
Радиус равен 4,5 см.