Докажите, что у четырехугольника, описанного около окружности, суммы длин противолежащих сторон равны. объясните, , какой многоугольник называется выпуклым?
выпуклым многоугольником называется многоугольник,обладающим тем свойством,что все его точки лежат по одну сторону от любой прямой,проходящие четез две его соседние вершины
1) Проекция бокового ребра на основание равно 2/3 высоты основания, а проекция апофемы - 1/3 этой высоты (по свойству медиан). Проведём сечение через ребро и ось. Высота пирамиды H = bsinβ. Проекция ребра равна bcosβ, а проекция апофемы (bcosβ) / 2. По Пифагору находим апофему А = √((b²cos²β/4)+b²sin²β) = =(b/2)√(cos²β+4sin²β).
2) Угол при вершине треугольника α = arc cos(m/m+n).
3) a*sin α = (b/cos α) + (b/sin α). После приведения к общему знаменателю получаем a*sin²α*cos α = b(sin α+cos α). Если заменить sin α+cos α = b√2(cos(π/4)-α) = b√2(sin(π/40+α). Тогда получим b = (a*sin²α*cosα) / (√2sin(π/4)+α).
В основе задания лежат свойства подобных треугольников. 1. Берем произвольный отрезок АВ и откладываем от него два данных угла . Соединяем лучи, исходящие из вершин А и В, точку пересечения обозначаем С,получается треугольник АВС , у которого два угла равны данным. 2 .Проводим вершину из угла С. Обозначим ее СЕ. 3.Далее на прямой СЕ отложим от точки Е отрезок, равный заданной высоте. Конец отрезка обозначим М. 4. Из точки М проведем прямые параллельно сторонам АС и ВС. Точки пересечения этих прямых с прямой АВ обозначим Р и Т. МРТ - искомый треугольник.
мы знаем что по свойству касательной
АР=АQ, DP=DN,CN=CM,BQ=BM, тогда отсюда мы получаем, что
AB+CD=AQ+BQ+CN+DN
и
BC+AD=BM+CM+AP+DP
СЛЕДОВАТЕЛЬНО ПОЛУЧАЕМ
AB+CD=BC+AD
доказали
Многоугольник называется выпуклым, если он расположен по одну сторону от любой своей стороны, неограниченно продолженной за обе вершины.