На стороне ас данного треугольника abc постройте точку d так, чтобы площадь треугольника abd составила одну треть площади треугольника abc. и если можно с рисунком, а то я не понимаю как чертить.
1) Известно, что у вписанного в окружность четырехугольника сумма противоположных углов равна 180 градусов. Последовательно вычитаем из 180 21 и ли 49 и находим больший угол. 2) В правильном многоугольнике углы и стороны равны. В правильном многоугольнике, вписанном в окружность углы лежат на окружности, следовательно отрезки соединяющие углы с центром окружности будут радиусы. Все проведенные радиусы к углам правильного многоугольника, деля его на равнобедренные треугольники, одновременно деля углы пополам. Следовательно углы при основании этих треугольников будут равны 70 гр. Следовательно углы при вершине этих треугольников будут равны 180-70-70=40 гр. Их общая сумма равна 360 гр. Отсюда 360:40=9 сторон.
Радиус вписанной окружности равен отношению площади треугольника к его периметру. найдем периметр: р=5*2+6=16. найдем площадь треугольника, для этого проведем из вершины к основанию высоту. так как в равнобедренном треугольнике высота является также и медианой, то основание разделилось на две равные части (6/2=3). найдем высоту по теореме пифагора: h²=5²-3²=25-9=16 h=4. теперь находим площадь треугольника, которая равна половине произведения основания на высоту: s=1/2*6*4=12 находим радиус вписанной окружности: r=s/p=12/16=0,75
как-то так, нужно просто что бы ас было поделено на три равных отрезка