1)Рассуждаем: если одна сторона прямоугольника х, то противоположная сторона также х.
2)Из периметра 20 вычитаем 2х, те (20-2х) -это то, что осталось от периметра на две другие, также равные друг другу противоположные стороны.
Тогда каждая из этих сторон будет равна (20-2х)/2=10-x
3) Итак выяснили, что стороны прямоугольника (попарно) есть х и 10-х.
4) Тогда площадь прямоугольника выразится как х·(10-х)=24.
Получим квадратное уравнение: х²-10х+24=0
Откуда х=6 и х=4 (тогда другая , смежная сторона будет 10-х т.е 4 или 6)
5) Вывод: прямоугольник с площадью 24см² должен иметь стороны 6см и 4 см.
Ну а к вопросу о том, что нужно начертить прямоугольный треугольник площадь которого в 2 раза меньше, чем площадь ранее рассмотренного прямоугольника, вообще никаких у Вас затруднений не вызовет-нужно просто провести любую диагональ в прямоугольнике. Она и разделит этот прямоугольник на два равных прямоугольных треугольника, каждый из которых будет в 2 раза меньше площади прямоугольника.
Удачи и здоровья!
Мага́дха (санскр. मगध) — древняя страна и историческая область в Индии, упоминаемая ещё в Рамаяне и Махабхарате, управлялась царями-буддистами. За долгую историю Индии сменялось множество династий Магадхи (Шайшунага, Нанда и др.). Магадха входила в список шестнадцати махаджанапад — больших государств в буддийских и джайнских источниках. Царь Бимбисара (543—491 до н. э.) из династии Харьянка, живший во времена Будды развитию буддизма и хорошо относился к джайнизму.
Образование Магадхи, по сведению в ведических текстах, произошло около 600 года до н. э. Самое раннее упоминание Магадхи происходит в Атхарваведе, где они перечисляются наряду с ангами, гандхари и муджаватами. Ядром королевства была область Бихара к югу от Ганга; его первой столицей была Раджагриха (современный Раджгир), затем Паталипутра (современная Патна). Магадха расширилась, когда была присоединена большая часть Бихара и Бенгалии с завоеванием Конфедерации Ваджжи и Анги. В конечном итоге королевство Магадха охватило Бихар, Джаркханд, Ориссу, Западную Бенгалию, восточный Уттар-Прадеш и районы современных Бангладеш и Непала.
Заметим, что малая диагональ сечения равна диагонали основания - как противоположные стороны прямоугольника, то есть dc=а√2.
Значит сторона сечения тоже равна а√2 (так как острый угол ромба равен 60°, а это значит что треугольник, образованный сторонами ромба и его малой диагональю, равносторонний).
Итак, b=а√2.
Найдем большую диагональ сечения (ромба). Половина этой диагонали находится по Пифагору:
Dc/2=√[b²-(d/2)²]=√[2a²-(2a²/4)]=√[2a²-(a²/2)]=√[(3a²/2)]=a√(3/2)=a√6/2.
Тогда Dс=a√6.
Найдем значение отрезка СС2 - расстояние, на котором плоскость сечения пересекает ребро параллелепипеда СС1.
По Пифагору СС2=√(Dс²-Do²)=√(6a²-2a²)=2a.
Угол между двумя пересекающимися плоскостями - это двугранный угол, образованный полуплоскостями и измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Тогда синус угла наклона плоскости сечения к плоскости основания (или угол между ними) равен отношению СС2 к большой диагонали сечения Dс, то есть угол наклона плоскости сечения к плоскости основания равен α=arcSin(2a/а√6) или α=arcSin (√6/3).
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.
Тогда угол наклона бокового ребра АА1 параллепипеда к плоскости сечения равен 90°- α. Но Sin(90-α)=Сosα, а Cosα=√(1-6/9)=√3/3.
В силу параллельности всех боковых ребер параллелепипеда, они все наклонены к плоскости сечения под этим углом.
Итак, угол наклона бокового ребра параллелепипеда к плоскости сечения равен arcCos(√3/3).
Расстояние от точки О до плоскости сечения равно ОН= АО*Sinα=(а√2/2)*(√6/3)=а√3/3.
Опустим перпендикуляр DD2 из точки D на плоскость сечения. Тогда DD2=OH=а√3/3. АD2 - это проекция ребра АD на плоскость сечения.
Значит <D2AD - это угол между ребром АD и плоскостью сечения.
Sin<(D2AD)=(DD2/AD)=(а√3/3)/a= √3/3.
В силу симметричности ребер АD и АВ относительно диагонали АС основания и в силу попарной параллельности ребер обоих оснований, они все наклонены к плоскости сечения под этим углом.
Итак, угол наклона ребер основания параллелепипеда к плоскости сечения равен arcSin(√3/3).
ответ: угол наклона боковых ребер параллелепипеда к плоскости сечения равен
arcCos(√3/3).
угол наклона ребер основания параллелепипеда к плоскости сечения равен
arcSin(√3/3).