М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
данииил4
данииил4
05.02.2020 04:10 •  Геометрия

Докажите, что сумма радиусов вписанной и описанной окружностей в прямоугольном треугольнике равна полусумме катетов

👇
Ответ:
alexeyschelin12
alexeyschelin12
05.02.2020
В треугольнике: катеты а и b, гипотенуза  с, прямой угол С,
R - радиус описанной окружности, r- радиус вписанной окружности.
Начнём с описанной окружности. Поскольку  угол С прямой, то этот угол опирается на диаметр окружности, т.е. диаметр окружности есть его гипотенуза, и. с = 2R
Теперь вписанная окружность. Опустим из её центра на катеты перпендикуляры, эти перпендикуляры равны r- радиусу вписанной окружности. Два взаимно перпендикулярных радиуса r и отрезки катетов, прилежащих к вершине прямого угла С, образуют квадрат со стороной r.
Тогда отрезки катетов, прилегающих к вершинам острых углов, равны
 (а - r) и (b - r).
Третий перпендикуляр, опущенный из центра окружности на гипотенузу делит её на отрезки, равные (а - r) и (b - r).
Получается, что гипотенуза равна c = a - r + b - r = a + b - 2r.
Но ранее мы получили, что с = 2R
Тогда 2R = a + b - 2r
2R + 2r = a + b
R + r = 0.5(a + b) что и требовалось доказать.
4,5(15 оценок)
Ответ:
Leg1oner
Leg1oner
05.02.2020
Стороны треугольника являются касательными к вписанной окр, отсюда отрезки касательных из вершин попарно равны.
Я все обозначил на рисунке. Также  a  и b -катеты.
А радиус описанн. окр. равен половине гипотенузы.
Теперь решаем.
a=y+r
b=x+r
a+b=x+r+y+r=(x+y)+2r=2R+2r   
a+b=2(R+r) 
R+r=(a+b)/2

что и требовалось доказать.
4,7(56 оценок)
Открыть все ответы
Ответ:
kushkulina2011
kushkulina2011
05.02.2020

Так как окружность касания осей координат, то для координат ее центра и радиуса окружности справделиво равенство|x_0|=|y_0|=R; учитывая, что окружность проходит через точку (8;-4) опускаем модуль (окружность за исключением точек касания находится в IV четверти) x_0=-y_0=R

уравнение окружности имеет вид (x-x_0)^2+(y-y_0)^2=R^2

(8-R)^2+(-4+R)^2=R^2;\\ R^2-16R+64+R^2-8R+16=R^2;\\ R^2-24R+80=0;\\ (R-20)(R-4)=0;

R=20 или R=4

значит существуют две окружности проходящие через точку (8;-4) и касающееся осей координат

(x-20)^2+(y+20)^2=400

и (x-4)^2+(y+4)^2=16

 

вторая задача, пряммая симетричная относительно точек А и В - середнинный перпендикуляр

Ищем координаты середины отрезка АВ,

x=\frac{-2+2}{2}=0; y=\frac{3+1}{2}=2;

(0;2)

ищем уравнение пряммой АВ в виде y=kx+b

3=-2k+b;

1=2k+b;

 

2=-4k

1=2k+b;

 

k=-0.5

b=2;

 

y=-0.5x+2

перпендикулярные пряммые связаны соотношением угловых коэффициентов

k_1k_2=-1

поєтому угловой коєффициент искомой пряммой равен k=-1/(-0.5)=2

учитывая что искомая пряммая проходит через точку С ищем ее уравнение в виде

y=kx+b (k=2)

2=2*0+b;

b=2

y=2x+2 или y-2x-2=0

 

в чем ошибка у вас - неведомо, ибо вы своего решения не предоставили

4,4(91 оценок)
Ответ:
ZENsh
ZENsh
05.02.2020

Так как окружность касания осей координат, то для координат ее центра и радиуса окружности справделиво равенство|x_0|=|y_0|=R; учитывая, что окружность проходит через точку (8;-4) опускаем модуль (окружность за исключением точек касания находится в IV четверти) x_0=-y_0=R

уравнение окружности имеет вид (x-x_0)^2+(y-y_0)^2=R^2

(8-R)^2+(-4+R)^2=R^2;\\ R^2-16R+64+R^2-8R+16=R^2;\\ R^2-24R+80=0;\\ (R-20)(R-4)=0;

R=20 или R=4

значит существуют две окружности проходящие через точку (8;-4) и касающееся осей координат

(x-20)^2+(y+20)^2=400

и (x-4)^2+(y+4)^2=16

 

вторая задача, пряммая симетричная относительно точек А и В - середнинный перпендикуляр

Ищем координаты середины отрезка АВ,

x=\frac{-2+2}{2}=0; y=\frac{3+1}{2}=2;

(0;2)

ищем уравнение пряммой АВ в виде y=kx+b

3=-2k+b;

1=2k+b;

 

2=-4k

1=2k+b;

 

k=-0.5

b=2;

 

y=-0.5x+2

перпендикулярные пряммые связаны соотношением угловых коэффициентов

k_1k_2=-1

поєтому угловой коєффициент искомой пряммой равен k=-1/(-0.5)=2

учитывая что искомая пряммая проходит через точку С ищем ее уравнение в виде

y=kx+b (k=2)

2=2*0+b;

b=2

y=2x+2 или y-2x-2=0

 

в чем ошибка у вас - неведомо, ибо вы своего решения не предоставили

4,6(98 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ