1). 1-0,5+2*0,5=1,5
2). sin2a-cos2a+1=sin2a+(1-cos2a)=2sin2a
3). ctg2B*sin2B-1=(cos2B/sin2B)*sin2B-1=cos2B-1=-sin2B
4).a больше 0, но меньше 90 градусов, следовательно число расположено в 1 четверти, следовательно синус больше нуля, тангенс больше нуля
соs а=3/5
cos2a+sin2a=1 (основное тригонометрическое тождество)
sin2a=1-9/25
sin2a=6/25
sina=(корень из 6)/5, так как синус больше нуля
tga=sina/cosa=(корень из 6)/5:3/5=(корень из 6)/3, так как тангенс больше нуля
Объяснение:
Извини, если немного непонятно. Мне, просто, было лень писать от руки
28 см
Объяснение:
Дано: ABCD - прямоугольник, AD=(АВ+2) см, ω(О; ОА) - описанная, R=5 см
Найти Р
Решение
1) Диагонали АС и BD прямоугольника пересекаются в т. О => OA=OB=OC=OD=R, тогда BD=2R=2OA=5×2=10 см
2) Пусть АВ=х см, x>0, тогда AD=(х+2) см
∆ABD, <BAD=90°, по теореме Пифагора BD²=AB²+AD²
10²=x²+(x+2)²
100=x²+x²+4x+4
2x²+4x-96=0
x²+2x-48=0
По теореме Виета для приведенного квадратного уравнения
{ х1+х2= -b= -2
{ x1x2= c= -48
x1= -8 - посторонний корень, x2= 6 см= AB
AD= x+2= 6+2= 8 см
3) Р= 2(AB+AD)= 2×(6+8)=14×2= 28 см
ΔМВК
ДЕ|| МК
ВЕ=5, ЕК=10, МК=18, Найдите DE.
Δ DДЕ подобен ΔМВК по двум углам
∠ВЕД=∠ВКМ как односторонние при параллельных прямых ДЕ и МК
∠В - общий
Из подобия
ВЕ: ВК=ДЕ:МК
5:15=ДЕ:18
Умножаем крайние и средние члены пропорции
15·ДЕ=90
ДЕ=6
2.
ΔОВЕ
MN- средняя линия
MN=9
Найти ВЕ
Средняя линия треугольника параллельна основанию и равна его половине.
ВЕ= 18 см