1) Основание данной призмы - это проекция полученного сечения на плоскость основания.
Отношение площади основания к площади сечения равно косинусу угла между ними. S(ABCDEF)/S(ABC₂D₁E₁F₂)=cosα.
Площадь правильного шестиугольника: S₆=3a²√3/2.
В тр-ке ВСD по т. косинусов BD²=BC²+CD²-2BC·CD·cos120°,
BD²=a²+a²-2a²·(-0.5)=3a².
BD=a√3.
В тр-ке BD₁D BD₁=√(DD₁²+BD²)=√(a²+3a²)=2a.
cosα=BD/BD₁=a√3/2a=√3/2.
S(ABC₂D₁E₁F₂)=S₆/cosα=(3a²√3/2):(√3/2)=3a² - это ответ.
2) в основании правильный треугольник, тогда его высота по Т.Пифагора: СН=кор(4^2-2^2)=кор12=2кор3
рассмотрим треугольник МНС-прямоугольный (угол С=90), угол МНС=45, тогда угол НМС тоже 45, следовательно, трреугольник равнобедренный, тогда НС=МС=2кор3
т.к. СС1=2МС=4 кор3
тогда площадь боковой поверхности
S=Pосн*Н=(4+4+4)*4кор3=48 кор3
опустим высоту, рассмотрим прямоугольный треугольник: в нём угол 30 гр. гипотенуза 14 другой угол 60 гр найдём высоту 14/2=7 (в прямоуг. треуг. против угла в 30 гр. лежит катет в 2 р. меньше гипотенузы)
ищем другой катет = половине основания =√(14²-7²)=√196-49=√147=7√3⇒ основание = 2*7√3=14*√3
ответ:а)
Можно методом простого подсчёта ответов
логично, что основание должно быть больше боковых сторон
ответ б) сразу отпадает ответ в) это 12,12 ⇒ они не подходят
методом исключения ответ :а)
Выбираем лучшее решение!
Аналогично, ∠FDA=∠FCK.
Значит, ΔFDA подобен ΔFCK
FC:FD=KC:AD=2:5
Пусть FD=5x, FC=2x, тогда CD=5x-2x=3x=AB
∠KAD=∠AKB, как накрестлежащие
Значит, ΔABK - равнобедренный, BK=AB=3x
Пусть KC=2y, AD=5y, тогда BK=3y; 3y=3x; y=x
Значит, AB=CD=3x, AD=BC=5y=5x;
Периметр равен 2(AB+AD)=2(3x+5x)=16x=64
x=4
AB=CD=3*4=12
AD=BC=5*4=20