М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Виктория17121
Виктория17121
03.02.2023 01:56 •  Геометрия

Найдите точки пересечения параболы у = х2 и прямой у = 100.

👇
Ответ:
Zepstro
Zepstro
03.02.2023

x^{2}=100

 

x=+-10

 

ответ: (10;100) и (-10;100)

4,7(46 оценок)
Открыть все ответы
Ответ:
livr5
livr5
03.02.2023
Пусть РАВС - данная пирамида, Р-вершина, РО = √13 см - высота,
РА=РВ=РС=6 см

1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)

2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3  = √69 (см) - это длина стороны основы.

3. Находим периметр основы.
Р=3а
Р=3√69 см

4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)

5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)

ответ. 11,25 √23 см².
4,5(78 оценок)
Ответ:
kozlov20041
kozlov20041
03.02.2023

Рассмотрим ∆ АВD и ∆ СВЕ

Оба прямоугольные и имеют общий острые угол АВС. 

Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.

Из подобия следует отношение 

ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒

ВЕ:ВС=ВD:АВ

Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий. 

2-й признак подобия треугольников:

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны. 

Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать. 

Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС. 


Ad перпендикулярно вс; се перпендикулярно ав доказать, что треугольник авс подобен треугольнику dbe
4,5(66 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ