Впараллелограмме биссектриса острого угла равного 60 градусов делит сторону параллелограмма на отрезки 25 см и 15 см,начиная от вершины тупого угла.найти меньшую диагональ и биссектрису.
Это на теорему косинусов задача биссектриса=v(25^2+25^2-2*25*25*cos120)=25v3 меньшая диагональ=v(25^2+40^2-2*25*40*cos60)=35 считать я не буду...сам(а) попробуй...cos120=-1/2 cos60=1/2
Соединим точку О с точками А, В, С . Получим два треугольника ОАВ и ОВС. Они равнобедренные оба, т.к. стороны ОА, ОВ, ОС являются радиусами окружности. Рассмотрим треугольник ОАВ, раз в нем угол ОАВ равен 43 градусам, то угол АВО тоже будет равен 43 градусам, как углы при основании равнобедренного треугольника. Определим угол ОВС в треугольнике другом. Раз угол АВС равен 75градусам из условия задачи, то угол ОВС будет равен 75-43=32 градуса. А искомый угол ВСО будет равен углу ОВС как угол при основании равнобедренного треугольника ., т.е .искомый угол ВСО=ОВС=32 градуса. ответ: угол ВСО=32 градуса
Сравним координаты векторов АВ и DC Знак вектора не стоит! AB ={0-1; 2-3; 4-2} = {-1;-1;2 }. DC ={1-2; 1-2; 4-2} = {-1; -1; 2}. Векторы равны, значит эти отрезки параллельны и равны, а поэтому АВСD - параллелограмм. Правда,остается шанс, что все точки лежат на одной прямой, но это проверим вычисляя косинус угла А. Угол А образован векторами АВ и АD. AB ={ -1; -1; 2}. AD ={2-1; 2-3: 2-2} = {1; -1;0}. Векторы не коллинеарны, значит точки не лежат на одной прямой. Для вычисления косинуса применим скалярное произведение векторов. cosA =(AB*AD)/(|AB|*|AD|)= (-1*1 + (-1)*(-1) + 2*0) / (√(1+1+4) * √(1+1+0))=0/(√6*√2) =0. Если косинус равен 0, то угол А = 90°.
биссектриса=v(25^2+25^2-2*25*25*cos120)=25v3
меньшая диагональ=v(25^2+40^2-2*25*40*cos60)=35
считать я не буду...сам(а) попробуй...cos120=-1/2 cos60=1/2