Пусть а=7, b=6 - стороны параллелограмма, обозначим диагональ d₁=x, тогда d₂=16-x Применяем формулу: сумма квадратов всех сторон параллелограмма равна сумме квадратов диагоналей.
2·а²+2·b²=d₁²+d₂² 2·7² + 2· 6²=х²+(16-х)² решаем квадратное уравнение: 98+72=х²+256-32х+х², х²-16х+43=0, D=b²-4ac=16²-4·43=256-172=84 x₁=8- √21 x₂=8+√21 если d₁=8-√21, тогда d₂=16-(8-√21)=8+√21 если d₁=8+√21, тогда d₂=16-(8+√21)=8-√21
Меньшая диагональ 8-√21, найдем косинус острого угла по теореме косинусов:
(8-√21)²=6²+7²-2·6·7·сosα
cosα=(36+49-64-21+16√21) / 84=4√21/21=4/√21 тогда sin α=√(1-(4/√21)²)=√(1-(16/21))=√(5/21) h=6·sinα=6√(5/21)
Площадь трапеции равна произведению высоты на полусумму ее оснований. Можно обойтись без рисунка, но с рисунком нагляднее. Рассмотрим рисунок с трапецией АВСД. Так как трапеция равнобедренная, а углы при основании равны 45°, высоты из вершин В и С, опущенные на основание АД, отсекают от трапеции два равнобедренных прямоугольных треугольника АВН и СКД. АН=ВН=СК=КД=АВ*sin(45) АН=8*(√2):2=4√2 Высота равна 4√2, АН=КД=4√2 ВС=НК=АД-2*АН=22-8√2 Полусумма оснований (ВС+АД):2=22+22-8√2=22-4√2 S (АВСД)=4√2(22-4√2)=88√2-32 см²
(произведение диагоналей)/2
(10*14)/2=70