Короче, получается так: Рассмотрим треугольник ABD: Один из углов в нем = 30 градусов, а сторона, лежащая против угла = 30 равна 1/2 гипотенузы, следовательно, AB = 2BD = 6 см. Зная о пропорциональности сторон в прямоугольном треугольнике, в частном случае то, что квадрат катета = произведению его проекции на всю гипотенузу составим и решим уравнение: AB^2 = BD * BC 3 (3+х) = 36 9 + 3х = 26 3х=27 х=9 (см) ответ: 9 см.
Решение: АС=АН+НС 1)Рассмотрим треугольник АВН, он прямоугольный, по определению высоты Катет противолежащий углы=равен произведению гипотенузы на синус этого угла, то есть Используя таблицу Брадиса найдем значение угла и получим, что угол ВАС=37 градусов 2) Рассматриваем треугольника АВС угол АСВ=180-угол ВАС-угол СВА=180-37-90=53градуса 3)рассмотрим треугольник ВНС Катет противолежащий углу равен произведению другого катета на тангенс этого угла, то есть 4)AC=AH+HC=8+4,5=12,5 ответ: АС=12,5
Решение: АС=АН+НС 1)Рассмотрим треугольник АВН, он прямоугольный, по определению высоты Катет противолежащий углы=равен произведению гипотенузы на синус этого угла, то есть Используя таблицу Брадиса найдем значение угла и получим, что угол ВАС=37 градусов 2) Рассматриваем треугольника АВС угол АСВ=180-угол ВАС-угол СВА=180-37-90=53градуса 3)рассмотрим треугольник ВНС Катет противолежащий углу равен произведению другого катета на тангенс этого угла, то есть 4)AC=AH+HC=8+4,5=12,5 ответ: АС=12,5
Рассмотрим треугольник ABD:
Один из углов в нем = 30 градусов, а сторона, лежащая против угла = 30 равна 1/2 гипотенузы, следовательно, AB = 2BD = 6 см.
Зная о пропорциональности сторон в прямоугольном треугольнике, в частном случае то, что квадрат катета = произведению его проекции на всю гипотенузу составим и решим уравнение:
AB^2 = BD * BC
3 (3+х) = 36
9 + 3х = 26
3х=27
х=9 (см)
ответ: 9 см.