Равновеликие фигуры — это такие фигуры, площади которых между собой равны.
Докажем, что S(ABCD) = S(EBCF).Доказательство :
Так как по условию ABCD — прямоугольник, то AB⊥ED.
Рассмотрим параллелограмм EBCF.
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно, S(EBCF) = АВ×EF.
EF = BC (по свойству параллелограмма).
Тогда также верно равенство S(EBCF) = АВ×ВС.
Рассмотрим прямоугольник ABCD.
Площадь прямоугольника равна произведению его смежных сторон.Следовательно, S(ABCD) = AB×BC.
Итак, так как правые части выражений равны, то мы можем приравнять из левые части. То есть мы получаем, что S(ABCD) = S(EBCF).
Что требовалось доказать.
Если в равнобедренной трапеции провести высоты ВН и СК, то получим НВСК - прямоугольник (ВС║КН, так как основания трапеции параллельны, ВН║СК как перпендикуляры к одной прямой), тогда
ВС = КН и ВН = СК.
ΔАВН = ΔDCK по гипотенузе и катету (АВ = CD, так как трапеция равнобедренная, ВН = СК), тогда
АН = DK = (AD - KH)/2 = (AD - BC)/2.
Площадь трапеции:
Sabcd = (AD + BC)/2 · BH
Воспользуемся этими выводами для решения задач:
а) AH = DK = (17 - 11)/2 = 3 см
ΔАВН прямоугольный с гипотенузой, равной 5 см и катетом 3 см, значит он египетский и
ВН = 4 см.
Sabcd = (17 + 11)/2 · 4 = 28/2 · 4 = 14 · 4 = 56 см²
б) AH = DK = (8 - 2)/2 = 3 см
ΔABH: ∠AHB = 90°, ∠BAH = 60°, ⇒ ∠ABH = 30°.
AB = 2AH = 6 см по свойству катета, лежащего напротив угла в 30°,
по теореме Пифагора:
BH = √(AB² - AH²) = √(36 - 9) = √27 = 3√3 см
Sabcd = (8 + 2)/2 · 3√3 = 15√3 см²
S треугольника АВД = 0,5АД*h
0,5АС*h = 3*0,5АД*h
АС=3*АД - т.е. АД в 3 раза < АС
ответ: т. Д должна быть расположена от т.А на расстоянии, равном 1/3 от АС