АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
В треугольнике АВО все углы равны по 60 градусов,т.к треугольник равносторониий угол АОВ является центральным углом и равен 60 градусам,а угол АСВ является вписанным,он равен половине соответствующего центрального угла и равен 30 градусовТ.к. треугольник ABC равносторонний, то все углы равны 60 градусов===>угол АOВ=60Т.к. угол АОВ центральный, то величина дуги АВ тоже равна 60.Угол АСВ вписанный, и опирается на дугу АВ. Т.к. он вписанный то угол будет равен половине величины дуги, тоесть уголАОВ=60/2=30 Или если просто из правила. Величина вписанного угла равна половине центрального угла опирающего на эту дугу. уголВСА=уголВОА/
Sавс = ½×AB×AC×sinA
___________________