Медианы треугольника в точке пересечения делятся в пропорции 2:1
Поскольку в равностороннем треугольнике высоты являются одновременно и медианами, то расстояние от точки пересечения до стороны является, как отрезком высоты, так и отрезком медианы, то есть составляет 1 часть, а расстояние до вершины - 2 части. Что и требовалось доказать.
1) Объем шара V1=4pir^2; 4pir^2=36pi; r^2-9; r=3. 2) Осевым сечением конуса будет равносторонний тр-к, а шара - круг, вписанный в этот тр-к. Центр вписанного в тр-к круга лежит в точке пересечения биссектрис. Но в равностороннем тр-ке это и медианы и высоты. Точка пересечения медиан делит медиану в отношении 2:1, считая от вершины. Значит высота тр-ка равна 3*3=9 Это и высота конуса h=9. 3) R - радиус основания конуса. По определению тангенса tg60o=h/R; R=h/tg60 = 9/V3 = 3V3. 4) Объем конуса V= (1/3)piR^2*h = (1/3)pi*(3V3)^2 * 9 = 1/3pi * 27 * 9=81pi кв. ед. ответ: 81pi кв. ед.
Sромба=(d₁*d₂)/2, d₁-диагональ АС ромба АВСД, d₂ -диагональ ВД 600=(40*d₂)/2, 600=d₂*20, d₂=30 см диагонали пересекаются в точке О и делятся пополам. сторона ромба АВ²=АО²+ОВ², (АО=d₁/2=20 cм, ОВ=d₂/2=15 см) АВ²=20²+15². АВ=25 см ΔАОВ: АВ= 25 см, АО=20 см, ВО= 15 см. ОМ перпендикулярна АВ. рассмотрим Δ АМО: АМ =х см, АО=20см МО найти. МО²=20²-х² рассмотрим Δ ВМО: ВМ =25-х см, ВО=15см МО найти. МО²=15²-(25-х)² 20²-х²=15²-(25-х)² 400-х²=225-625+50х-х² 50х=800, х=16. найдем МО: МО²=15²-(25-16)², МО=12 см. рассмотрим ΔМОР (Р -точка, отстоящая от плоскости ромба на расстоянии 16 см) МР= -наклонная, РО=16 см- перпендикуляр к плоскости ромба (по условию) МО- проекция наклонной МР. МР перпендикулярна стороне ромба АВ, следовательно и наклонная перпендикулярна АВ по т. о трех перпендикулярах. ΔМОР прямоугольный, по т. Пифагора: МР²=МО²+РО² МР²=12²+16², МР²=400, МР =20см. ответ: расстояние от точки до каждой стороны ромба =20 см.
Медианы треугольника в точке пересечения делятся в пропорции 2:1
Поскольку в равностороннем треугольнике высоты являются одновременно и медианами, то расстояние от точки пересечения до стороны является, как отрезком высоты, так и отрезком медианы, то есть составляет 1 часть, а расстояние до вершины - 2 части. Что и требовалось доказать.