Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
ответ:даны точки A(3;-1;2) и B(5;1;1) a)Найдите координаты и модуль вектора AB. б) Найдите координаты точки C, если AC(-4;0;2
в) ТОчка D лежит на оси y. Найдите координаты, если я пропустил тему, (если можно с объяснением! )
АВ (5-3;1-(-1);1-2)=(2;2;-1)
IАВI=√2²+2²+(-1)²=√4+4+1=√9=3
АС=(х-3;у-(-1);z-2)=(х-3;у+1;z-2)=(-4;0;2)
х-3=-4;х=-4+3;х=-1
у+1=0;у=-1
z-2=2;z=2+2;z=4
Следовательно, С (-1;-1;4)
Точка Д лежит на оси ОУ, следовательно, х=0;у; z=0
ВД=√0²+у²+0²=√у²=у=√26
Д (0;√26;0)
Объяснение: