М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vikatormash09
vikatormash09
10.11.2022 10:36 •  Геометрия

Abcd - параллелограмм, из точек a, b, c, и d на плоскость альфа опущены перпендикуляры.aa1, bb1, cc1, dd1, aa1 = 13, bb1 = 36, cc1 = 19. найти dd1.

👇
Ответ:
Greeegooo
Greeegooo
10.11.2022

Объяснение:  Принципы решения подобных задач схожи.

  Соединим точки а1 и с1,  d1 и b1  проекции параллелограмма на плоскости альфа. Соединим А и С, В и D данного по условию параллелограмма АВСD.

 Перпендикуляры Аа1 и Сс1, Вb1 и Dd1 параллельны, => четырехугольник а1АСс1 - трапеция. Точки К и М - пересечение диагоналей исходного параллелограмма и его проекции a1b1c1d1 ( тоже параллелограмма) на плоскость альфа, а КМ - их средняя линия.

Диагонали параллелограмма точкой пересечения делятся пополам.  Из трапеции Аа1с1С средняя линия КМ=(13+19):2=16

Для трапеции Вb1d1D отрезок КМ - также средняя линия. Средняя линия трапеции равна полусумме оснований. Тогда сумма Вb1+Dd1=KM•2=32. НО! Длина основания Вb1 > 32, т.е. больше суммы оснований трапеции Вb1d1D.

Ясно, что в условии задачи допущена ошибка в длинах перпендикуляров из вершин  ABCD, что не помешает при корректных величинах без труда найти четвертый перпендикуляр ( Dd1).  


Abcd - параллелограмм, из точек a, b, c, и d на плоскость альфа опущены перпендикуляры.aa1, bb1, cc1
4,6(70 оценок)
Открыть все ответы
Ответ:
оскарик3929
оскарик3929
10.11.2022
1)получим треугольник со сторонами 4 и 5, и углом 180-52=128  используйте теорему косинусов (квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.)  a^2 = b^2 + c^2 - 2bc*cos(a)  2)вначале по теореме косинусов: cos87=0,05 sin87=0,9 bc^2=ab^2+ac^2-2ab*ac*cosa bs^2=45^2+32^2-2*45*32*0,05 bc^2=2905 bc=54(примерно) по теореме синусов: ab/sinc=bc/sin87 45/sinc=54/0,9 sinc=0,75 уголc=41(примерно) уголb=180-87-41=52
4,8(46 оценок)
Ответ:
mamarika2001
mamarika2001
10.11.2022
а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.

б) Найдите угол между этой плоскостью и плоскостью основания АВС.
Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ.
Точки пресечения - это Д и Е.
Примем длину отрезка АК за 1.
Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3.
Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1.
Угол ЕАД равен 60 градусов (по заданию).
По теореме косинусов ED= \sqrt{1^2+( \frac{1}{ \sqrt{3}} )^2-2*1*( \frac{1}{ \sqrt{3} } )*cos60}=
= \sqrt{1+ \frac{1}{3} -2*1* \frac{1}{ \sqrt{3} }* \frac{1}{2}} = \sqrt{ \frac{4- \sqrt{3} }{3} } =0.869472866.

Находим гипотенузы в треугольниках АКД и АКЕ.
KD= \sqrt{AK^2+AD^2} = \sqrt{1+ \frac{1}{3} } = \frac{2}{ \sqrt{3} } .
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов).
Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти.
Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД.
Находим высоты в треугольниках АЕД и КЕД по формуле:
h _{a} = \frac{2 \sqrt{p(p-a)(p-b)(p-c)} }{a} .
АЕ         ДЕ                 АД                  p                      2p               S =
1    0.8694729    0.5773503    1.2234116    2.446823135     0.25
 haе              hде                 hад
 0.5          0.57506            0.86603 

       КЕ                ДЕ              КД              p                2p               S =
1.4142136   0.869473   1.154701   1.719194    3.43839    0.501492
       hке                hде                     hкд
0.7092           1.15356              0.86861.
Отношение высот hде и  hде  - это косинус искомого угла:
cos α = 0.57506 / 1.15356 =  0.498510913.
ответ: α = 1.048916149 радиан =  60.09846842°. 
4,7(87 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ