Втреугольнике авс проведена медиана вм.угол авс=150 градусов,ас=12 корней из 2 (см).радиус окружности,описанной около треугольника мвс,равен 2 корня из 6 (см).найдите радиус окружности,описанной около треугольника авм.
1)г. 2)б. 3)а. 4)в. 5)я прикрепила картинку к этому заданию.Не забудь написать «Дано: треугольникABC; a=7;b=8;c=5. Найти : <А-?» ответ , кстати , в конце <А=60 градусов.(просто не поместилось.) 6)AB=10x
S=pr
p=13x+13x+10x2=18x
S=p(p−13x)(p−13x)(p−10x)‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾√ — по формуле Герона.
7) если СК биссектриса, то по ее свойству если СЕ/СВ=3:1 то и КЕ:ВК=3:1 Обозначим ВК=у, КЕ=3у значит, ВЕ=4у т.к. угол ВОЕ центральный для угла С, то он=120 и тогда ∠ВОК=60 ВМ=ВО*sin 60 BM=8√3*√3/2=12 ВЕ=4у=24 ⇒ у=6 3у=3*6=18
8) 1. Теорема синусов для треугольника КОР KP/sin KOP=OP/sin OKP sin OKP=3*sqrt2*sqrt2/2/5=3/5 cos^2(OKP)=1-sin^2(OKP)=(4/5)^2 Т.к. КОР тупой, то ОКР острый, cos OKP=4/5 2. sin OPK=sin(180-KOP- OKP)=sin(KOP+OKP)=sin KOP*cos OKP+cos KOP*sin OKP sin OPK=sqrt2/2*(4/5-3/5)=sqrt2/10 3. S(KMP)=2*S(KOP)=OP*KP*sin OPK=3*sqrt2*5* sqrt2/10=3
9) Если диагонали трапеции перпендикулярны, то площадь можно найти по следующим формулам: S-Һв квадрате, где һ-высота или S-(a+b)в квадрате/4, где а иb -основания Воспользуемся последней формулой!Т к дана длина ср линии трапеции, то можно найти сумму длин оснований трапеци: ср линия3 1/2(а+b); 5%31/2(а+b); (а+b)-10см Найдем S- (а+b)в квадрате/4 %3D10в квадрате/ 4-25см2
Допустим, прямая не пересекает плоскость бета, а параллельна ей. Тогда все точки этой прямой должны находиться на равном удалении от плоскости бета (иначе один из концов пряой приблизится к плоскости бета и пересечет ее) . Одна точка, точка пересечения прямой с плоскостью альфа, находится на том же расстоянии от плоскости бета, что и плоскость альфа. Следовательно все остальные точки прямой находятся на таком же расстоянии, т. е. лежат в плоскости альфа, значит вся прямая долна лежать в плоскости альфа. Но по условию прямая не лежит в плоскости альфа, а пересекает ее. Таким образом она не может быть параллельна плоскости бета и пересечется с ней.
2Проведем в плоскости α две пересекающиеся прямые a и b, а через точку А проведем прямые a1 и b1, соответственно параллельные прямым а и b. Рассмотрим плоскость β, проходящую через прямые a1 и b1. Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α.Докажем теперь, что β — единственная плоскость, проходящая через точку А и параллельная плоскости &alpha. В самом деле, любая другая плоскость, проходящая через точку А, пересекает плоскость β, поэтому пересекает и параллельную ей плоскость a
Пусть AB = c; BC = a; АС = b (задано, b = 12*корень(2)); AM = MC = b/2; угол МВС = Ф;
Из теоремы синусов для тр-ка ВМС (R1 - радиус описанной окружности, R1 = 2*корень(6);)
2*R1*sin(Ф) = b/2; отсюда sin(Ф) = b/(4*R1);
Из теоремы синусов для тр-ка ВМA (R2 - радиус описанной окружности, R2 надо найти; В - это угол АВС = 150 градусов)
2*R2*sin(В - Ф) = b/2; отсюда R2 = b/(4*sin(B - Ф));
На самом деле это уже ответ.
Но для полноты картины надо подставить числа и максимально упростить.
Для начала видно, что
sin(Ф) = 12*корень(2)/(4*2*корень(6)) = корень(3)/2.
Угол с таким синусом в треугольнике может быть либо 60 градусов, либо 120 (соответственно, cos(Ф) принимает значение либо 1/2 либо (-1/2); )
Если Ф = 60 градусов, то В - Ф = 90 градусов, sin(В - Ф) = 1; и R2 = b/4 = 3*корень(2);
Если Ф = 120 градусов, то В - Ф = 30 градусов, sin(В - Ф) = 1/2; и R2 = b/2 = 6*корень(2);
У меня получилось 2 решения.