Запишите уравнение плоскости, проходящей через точки M0(−4,7,1) и M1(−4,8,0) параллельно вектору e¯¯¯={1,9,−6}.
Вектор М0М1 лежит в искомой плоскости, поэтому нормальный вектор этой плоскости найдём как векторное произведение векторов М0М1 и е.
М0М1 = (-4-(-4); 8-7; 0-1) = (0; 1; -1).
Найдём векторное произведение по схеме Саррюса.
М0М1 x e = I j k| I j
0 1 -1| 0 1
1 9 -6 | 1 9 = -6i – 1j + 0k + 0j + 9i – 1k =
= 3i – 1j – 1k.
Найден нормальный вектор (3; -1; -1).
Теперь по точке M0(−4,7,1) и нормальному вектору (3; -1; -1) составляем уравнение искомой плоскости.
3(x + 4) – 1(y – 7) – 1(z – 1) = 0.
3x +12 – y + 7 – z + 1 = 0.
3x – y – z + 20 = 0.
ответ: 3x – y – z + 20 = 0.
Затем общеизвестным с циркуля и линейки разделите ее пополам перпендикуляром.
По свойству радиуса, проведенного перпендикулярно к хорде через ее середину, продолжение получившегося перпендикуляра до окружности будет ее диаметром (этап 2).
Получившийся диаметр точно так же разделите перпендикуляром пополам. (этап 3)
Получите точку пересечения диаметров - это и будет центр окружности.
Как известно, диаметр делит окружность на две дуги, градусная мера которых 180°.
Раствором циркуля, равным радиусу данной окружности, поочередно отметьте на ней три равных дуги. Их общая градусная мера равна 180°, так как раствор циркуля, равный радиусу, отмечает на окружности дугу, равную 60°.
Соединив первую (откуда начали ) и четвертую точку, получите диаметр.
От первой отложите в другой полуокружности тем же раствором циркуля еще одну точку (5). Эта дуга также равна 60°.
Соединив тоску 5 с точкой 3 по другую сторону от проведенного прежде диаметра, получите второй диаметр. Точка пересечения диаметров - центр окружности.