Пусть градусная мера одной части будет х. Тогда дуга АВ содержит 3х, дуга ВС - 4х и АС-5х. Окружность содержит 360°, ⇒ 3х+4х+5х=360° ⇒ х=30° 1) Дуга АВ равна: 30°*3=90° На нее опирается вписанный угол АСВ⇒ По свойству градусной величины вписанного угла он равен половине этой дуги: 90°:2=45° 2) Дуга ВС равна 30°*4=120° На эту дугу опирается вписанный угол САВ; он равен её половине: 120°:2=60° 3)Дуга АС равна 30°*5=150° На эту дугу опирается угол АВС, и он равен её половине: 150°:2=75° Углы треугольника АВС равны половинам градусных мер дуг, на которые они опираются: ∠С=45°, ∠ А= 60°, ∠ В=75°
Сумму углов многоугольника определяют по формуле 180(n-2), где n - число сторон многоугольника. Приведу решение для варианта А в качестве примера. 1080°=180°(n-2) Разделив на 10° обе части ( можно и не делить) получим: 1080°=180°*n-360° 1440=180n n=8 ( сторон) Но есть другой при котором можно обойтись без данной формулы. Известно, что сумма ВСЕХ внешних углов многоугольника равна 360 градусов, сколько бы их ни было. Сумма внешних и внутренних углов кратна 180° ( один внутренний +один внешний составляют развернутый угол). 1080°+360°=1440 n=1440:180=8. С остальными фигурами Вы теперь без труда справитесь самостоятельно.
Набросок чертежа прикрепил сумма углов четырёхугольн =360° следовательно угол АBD=360-(90+90+117)=63° 2)т.к. углы между вершиной и сторонами не равны 90° следовательно основание и вершина не параллельны и будут иметь точку тересечения; думаю это не обязательно, однако, продлив линию вершины (АВ) и получив точку пересечения К мы можем посчитать угол треугольника КВD 180-90-63=27°, это ещё одно докозательство того, что есть точка пересечения(в данном случае точка К). Если будешь писать прт продление прямой, то на 2 фото чертёж(там, где есть ещё и точка К)
Тогда дуга АВ содержит 3х, дуга ВС - 4х и АС-5х.
Окружность содержит 360°, ⇒
3х+4х+5х=360° ⇒
х=30°
1) Дуга АВ равна: 30°*3=90° На нее опирается вписанный угол АСВ⇒
По свойству градусной величины вписанного угла он равен половине этой дуги:
90°:2=45°
2) Дуга ВС равна 30°*4=120°
На эту дугу опирается вписанный угол САВ; он равен её половине:
120°:2=60°
3)Дуга АС равна 30°*5=150°
На эту дугу опирается угол АВС, и он равен её половине:
150°:2=75°
Углы треугольника АВС равны половинам градусных мер дуг, на которые они опираются: ∠С=45°, ∠ А= 60°, ∠ В=75°