Около правильного треугольника авс описана окружность. длина дуги ав равна 2π см. найдите: а) радиус данной окружности; в) длину одной из медиан треугольника авс. с решением (подробно) буду !
Дуга АВ=дугеВС=дугеАС поэтому длина окр. С=2П*3=6П=18.84 см С=2ПR 18.84=6.28*R R=3см сторона треуг-ка пусть будет а а=R* на корень из3=3*на корень из 3 медиана=а*на корень из 3и /на2=4.5см
Известна формула радиуса описанной окружности треугольника. R=abc:4S, где а,b,c- стороны треугольника, Ѕ - его площадь. Для этой формулы нужна высота треугольника. Ее можно выразить через основание, и в итоге самостоятельно прийти к формуле радиуса описанной окружности равнобедренного треугольника: R=a²:√(4a²-b²) - где а- боковая сторона, b- основание. Возведем обе части уравнения в квадрат: R²=а⁴:(4а²-b²) и выразим b² через радиус и боковую сторону: R²*4a²-R²*b²=a⁴ R²-4a²-a⁴=R²*b² a²(4R²-a²)=R²*b² b²=a²(4R²-a²):R² Подставим в получившееся выражение известные величины: b²=400*(625-400):156,25 b²=576 b=24 (единиц длины)
Имеем треугольник АВС со сторонами АВ:ВС=15:41; и высотой ВД; Проекции сторон на основание АС равно АД=12; СД=40; Обозначим коэффициенты подобия сторон AB за Х, она будет равна 15 Х, а проекцию стороны СД за У и она будет равна 41У; Тогда справедливо равенство:15Х+41У=56;Так как их сумма равна 56 по УСЛОВИЮ ЗАДАЧИ; Приняв коэффициенты подобия за 1 в обоих случаях имеем15+41=56; Проверим данный ответ через длину их общей высоты АД, она должна иметь одно и то же значение: АД^2=41^2-40^2=81; 15^2-12^2=81; 81=81; Решение верно! ответ:АВ=15; ВС=41;