Рассмотрим ΔАСО и ΔАВО: у них: 1) ∠АОВ=∠АОС 2) АО - общая сторона 3) ∠САО=∠ВАО (т.к. АО биссектриса) ⇒ ΔАСО=ΔАВО по 2 признаку (по 2 углам и стороне) ⇒АВ=АС
Пусть AD и BE пересекаются в точке K В треугольнике ABD BE - и биссектриса и высота, то есть это равнобедренный треугольник, AB = BD, и BE - так же и медиана, то есть AK = KD; Пусть теперь точка F лежит на продолжении BA за точку A, так что CF II AD. Так как BD - медиана, то в треугольнике FBC AD - средняя линия, а CA - медиана треугольника FBC; само собой, BE так же медиана этого равнобедренного треугольника FBC (если её продолжить за точку E до пересечения с FC в точке G), то есть точка Е делит AC, как это обычно и бывает с медианами: AE/EC = 1/2; Более того, BE/EG = 2/1, то есть BE/BG = 2/3; а BK/KG = 1/1; то есть BK/BG = 1/2; отсюда BK/BE = 3/4; и KE/BE = 1/4; Таким образом, AK = KD = 48; KE = 24; BK = 72; AB = √(48^2 + 72^2) = 24√13; BC = 2*AB = 48√13; AE = √(48^2 + 24^2) = 24√5; AC = 3*AE = 72√5;
Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек (а || )
Признак параллельности прямой и плоскости.
Теорема. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Замечания.
Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой. Если одна из двух параллельных прямых параллельна данной плоскости, а другая прямая имеет с плоскостью общую точку, то эта прямая лежит в данной плоскости. Выводы.
Случаи взаимного расположения прямой и плоскости:
а) прямая лежит в плоскости; б) прямая и плоскость имеют только одну общую точку; в) прямая и плоскость не имеют ни
Определение. Две плоскости называются параллельными, если они не имеют общих точек.
Параллельность плоскостей и обозначается так: || . Рассмотрим признак параллельности двух плоскостей.
Теорема. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Случаи взаимного расположения плоскостей:
плоскости и параллельны. Свойства параллельных плоскостей:
1. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
2. Отрезки параллельных прямых, заключённые между параллельными плоскостями, равн
1) ∠АОВ=∠АОС
2) АО - общая сторона
3) ∠САО=∠ВАО (т.к. АО биссектриса)
⇒ ΔАСО=ΔАВО по 2 признаку (по 2 углам и стороне)
⇒АВ=АС