М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
katka1999
katka1999
14.07.2022 22:30 •  Геометрия

Вкруге проведены две перпендикулярные хорды ас и bd, пересекающиеся в точке м. докажите, что прямая, проходящая через м перпендикулярно ав, делит сd пополам.

👇
Ответ:
айсу20
айсу20
14.07.2022
Решение во вложенном файле.

Вкруге проведены две перпендикулярные хорды ас и bd, пересекающиеся в точке м. докажите, что прямая,
4,6(32 оценок)
Открыть все ответы
Ответ:
Елька165
Елька165
14.07.2022
1.
Свойство касательных к окружности, проведенной из одной точки:
отрезки касательных равны.
х-радиус вписанной окружности
(см. рисунок в приложении)
Учитывая, что периметр равен  54, составляем уравнение:
х+х+х+х+3+3+12+12=54
4х+30=54
4х=24
х=6

2.  Из условия:
   ∠С=х
   ∠А=4х
   ∠В=4х-58°

Так как четырехугольник вписан в окружность, то
∠А+∠С=180°
∠В+∠Д=180°

4х+х=180°
5х=180°
х=36°

Тогда
∠С=36°
   ∠А=4х=4·36°=144°
   ∠В=4х-58°=144°-58°=86°

∠В+∠Д=180°  ⇒  ∠Д=180°-∠В=180°-86°=94°

ответ. ∠А=144°
            ∠В=86°
           ∠С=36°
           ∠Д=94°

Іть 1 коло, вписане в прямокутну трапецію, ділить точкою дотику, ділить бічну сторону, на відрізки з
4,8(85 оценок)
Ответ:
zhadyra1984
zhadyra1984
14.07.2022
Так как искомая окружность должна касаться хорды АВ данной нам окружности радиуса R=15 и самой этой окружности, ясно, что искомая окружность расположена внутри кругового сегмента, стягиваемого хордой АВ. Поскольку хорда АВ делит круг на два круговых сегмента, существует и два варианта решения.
На рисунке представлены оба варианта расположения искомой окружности.
Точка касания "С" этой окружности с хордой АВ определена.
Проведем радиус  r=O1C искомой окружности  в точку касания. Этот радиус О1С перпендикулярен хорде АВ. Проведем радиус R=ОР данной нам окружности к хорде АВ . Он также перпендикулярен хорде АВ и, кроме того, делит ее пополам в точке М. Тогда АМ=0,5АВ=12, АС=АВ/3=8. СМ=12-8=4.
Опустим из центра искомой окружности перпендикуляр на диаметр КР, включающий в себя радиус R. О1М1=СМ=4. Из прямоугольного треугольника ОАМ по Пифагору найдем отрезок ОМ.
ОМ=√(АО²-АМ²)=√(15²-12²)=9.
В прямоугольнике М1О1СМ сторона ММ1=r, где r - радиус искомой окружности.  
Тогда для первого варианта (окружность расположена в большем секторе):
ОМ1=ММ1-ОМ = r-9. ОО1=R-r. (Так как оба радиуса лежат на одной прямой - радиуса в точку касания Т обеих окружностей). И из прямоугольного треугольника М1О1О по Пифагору имеем:
ОО1²=О1М1²+М1О² или (15-r)²=4²+(r-9)² или
225-30r+r²=16+r²-18r+81. Отсюда r=32/3.
Для второго варианта (окружность расположена в меньшем секторе):
ОМ1=ММ1+ОМ = r+9. И ОО1²=(15-r)²=4²+(r+9)² или 225-30r+r²=16+r²+18r+81. Отсюда r=8/3.

Вокружности, радиус которой равен 15, проведена хорда ав = 24. точка с лежит на хорде ав так, что ас
4,7(16 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ