1) B=D=126°(как внутренне накрест лежащие):Сумма всех углов параллелограмма равна 360°,следовательно угол A+C=360°-(126°+126°)=108°, угол А=108°/2=54°,угол А=углу С=54°
2)P=36см,к пример сторону 1 и 3 примем за 1х+1х,стороны 2 и 4 за 2х+2х,сумма всех сторон равна : 6х=36,из этого х=6,дальше :сторона 1 равна 1х=6,сторона 2 равна 2х=12,сторона 3=стороне 1,а сторона 4= стороне 2
3)P=40дм=400см,у параллелограмма сторона 1=стороне 3,а сторона 2=стороне 4,следовательно: сторона 1=3х,2=2х,сторона 1=3,сторона 2=4
сумма всех сторон равна 400см=10х,х=40.Сторона 1 равна 120см,сторона 3 =стороне 1=120см,сторона 2 равна 80см,сторона 4=стороне 2=80см
4)Сумма углов параллелограмма=360°,из этого следует что угол D=360°-237°=123°,угол В=углу D=123° (как накрест лежащие),угол А+С=237°-123°=114°,угол А=114°/2=57°,угол С=углу А=57°
пусть ad> bc , тогда острые углы равные 75 и 15 гр лежат при оснований ad , положим что y,w середины сторон ab и cd соответственно , тогда yw средняя линия трапеции , значит ad+bc=2yw из условия мы знаем что yw равна либо 15 либо 7 , положим что ab и cd пересекаются в точке e , тогда aed=180-(75+15)=90 , положим также что z,x это середины сторон основании bc,ad соотвественно , пусть n точка пересечения yw и zx , тогда по замечательному свойству трапеции точки e,z,x лежат на одной прямой , учитывая что угол aed прямой , получаем что ax=ex=ad/2 , ez=bz=bc/2 , но так как ex=ez+zx откуда окончательно получаем две системы
{ad-bc=2*7
{ad+bc=2*15
или
{ad-bc=2*15
{ad+bc=2*7
подходит решение первой системы , так как они положительны , складывая получаем ad=22 , bc=8 , значит ответ bc=8.
S=8√2