Прямые, проведенные через вершины параллелограмма АВСD - параллельны, значит все грани получившейся фигуры АВСDА1B1C1D1 - трапеции. Проведем диагонали оснований. Точка пересечения диагоналей параллелограммов делит их пополам, значит отрезок ОО1 является средней линией трапеций АСС1А1 и ВDD1В1 (то, что это тоже трапеции, доказывать не надо?). Средняя линия трапеции равна полусумме оснований, то есть ОО1= (АА1+СС1)/2 = 11. Но ОО1 - это средняя линия трапеции ВВ1D1D тоже и равна (ВВ1+DD1)|2=11, отсюда ВВ1+DD1=22, а DD1= 22- 12 =10. ответ: DD1 = 10см.
1)Плоскость параллельна АВ, значит отрезок КМ принадлежащий и плоскости а и плоскости АВС - параллелен АВ. Значит тр-ки АВС и КМС подобны. Из подобия имеем: АВ/КМ=АС/КС или АВ/36=18/12.. Отсюда АВ = 54см. 2) В равнобедренном тр-ке АВС высота ВD1 к основанию АС является и медианой, то есть AD1=AC/2 = 16cм. Тогда высота BD1 по Пифагору равна √(34²-16²) = 30см. В прямоугольном тр-ке ВDD1 гипотенуза DD1 = √(BD1²+BD²)= √(900+400) ≈ 36cм. Синус угла между плоскостями АВС и ADC - это Sin <DD1B = BD/DD1 = 0,56. Значит угол равен 34°
след-но, 180*25=4500
4500/27=166,66 градусов внутрение углы
внешний 180-166,6=23,33