Диагональ делит прямоугольник на два равных прямоугольных треугольника.
Равнобедренный треугольник так же делится на два равных прямоугольных треугольника высотой, проведенной из вершины.
Значит надо совместить равные противоположные стороны прямоугольника так, чтобы стороны, образованные диагональю, стали боковыми сторонами треугольника.
Средняя линия треугольника параллельна стороне треугольника и равна ее половине . В условии не сказано, параллельно какой из сторон проведена средняя линия MN, поэтому может быть два варианта решения. 1 вариант: MN параллельна основанию RS, RF=SF, RS+2*RF=30 (дано). Тогда RS=8, а RF=(30-8):2=11. 2 вариант: MN параллельна боковой стороне RF. Тогда RF=SF=8, а RS=30-2*8=14.
Оба варианта удовлетворяют условию существования треугольника (теорема о неравенстве), так как большая сторона меньше суммы двух других сторон.
Вариант решения. Пусть S - площадь треугольника АВС. Необходимо найти отношение площадей треугольника АРМ и четырехугольника ВРМС. Сделаем рисунок и соединим В и М отрезком ВМ. Отношение площадей треугольников с равными высотами равно отношению их оснований. Высота ∆ АВМ и ∆ АВС одна и та же. Основания их относятся как АМ:АС = 3:(3+5) , Площадь ∆ АВМ равна 3/8 площади ∆ АВС, т.е. ³/₈S На том же основании площадь ∆ АРМ равна 5/9 площади ∆ АВМ ( у них одна и та же высота из М к АВ) и равна ⁵/₉ от ³/₈S Площадь ∆ АРМ=¹⁵/₇₂S=⁵/₂₄S Площадь четырехугольника ВРМС равна S(ABC) - ⁵/₂₄(S(ABC) =¹⁹/₂₄ S(∆ ABC) Площади ∆ АРМ и четырехугольника ВРМС относятся как (⁵/₂₄S):¹⁹/₂₄ S)=5:19
Диагональ делит прямоугольник на два равных прямоугольных треугольника.
Равнобедренный треугольник так же делится на два равных прямоугольных треугольника высотой, проведенной из вершины.
Значит надо совместить равные противоположные стороны прямоугольника так, чтобы стороны, образованные диагональю, стали боковыми сторонами треугольника.