Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом и делят АВСD на 4 прямоугольника, (неважно, равной или разной площади). Обозначим точку пересечения МК и NP буквой О.
а)
Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.
б)
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Так как S(ABCD)=AB•CD, МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).
в)
S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>
S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD
Средние линии треугольника параллельны стороне, которую не пересекают. При этом соответственные углы, которые получаются при пересечении параллельных сторон третьей, равны.
Треугольник, образованный средним линиями исходного треугольника, подобен ему. Поэтому отношение сторон обоих треугольников одинаково.
Периметр треугольника, образованного средними линиями, 40 см,
его стороны относятся как 2:3:5.
Примем коэффициент отношения сторон равным а. тогда периметр меньшего треугольника 2а+3а+5а=10а ⇒
10а=40
а=4 см
2а=8 см, 3а=12 см, 5а=20 см
Стороны треугольника, образованного средними линиями исходного.
8 см, 12 см, 20 см.
---------
Примечание. Именно так решаются подобные задачи. НО! Здесь получается, что большая сторона равна сумме двух других. В решении по данному условию не может быть выполнено правило о неравенстве треугольника, по которому любая сторона треугольника не может быть равна или больше суммы двух других. Вопрос не удален, так как задача с таким же условием давалась другим пользователем и в другое время, значит, составлена с ошибкой.