1)
сумма смежных углов = 180
пусть один из углов х,тогда другой - 8 х
х+8х = 180
9х = 180
х = 20
8х = 20 * 8 = 160
2) если я правильно поняла задание,то две прямые пересеклись,один угол 134,надо найти остальные три угла
сумма четырех углов = 360
два угла будут по 134(как вертикальные) | = > остальные два будут (360 - 92) : 2 = 46
3) < СОД = 50 , < ДОВ = 90 (т.к перпендикуляр) | = > , COВ = 50 + 90 = 140
угол АОВ и угол БОС - смежные,т е АОВ + ВОС = 180
АОБ + 140 = 180
АОВ = 180 - 140 = 40
1)
сумма смежных углов = 180
пусть один из углов х,тогда другой - 8 х
х+8х = 180
9х = 180
х = 20
8х = 20 * 8 = 160
2) если я правильно поняла задание,то две прямые пересеклись,один угол 134,надо найти остальные три угла
сумма четырех углов = 360
два угла будут по 134(как вертикальные) | = > остальные два будут (360 - 92) : 2 = 46
3) < СОД = 50 , < ДОВ = 90 (т.к перпендикуляр) | = > , COВ = 50 + 90 = 140
угол АОВ и угол БОС - смежные,т е АОВ + ВОС = 180
АОБ + 140 = 180
АОВ = 180 - 140 = 40
1. Правильный пятиугольник, сторона = 1 см.
Отношение диагонали правильного пятиугольника к стороне = золотому сечению (то есть числу (1+√5)÷2).
Считаем: х÷1 = (1+√5)÷2
x = 1.6180339888 (см)
2.Правильный шестиугольник, сторона = 5 см.
При проведении меньшей диагонали получаем треугольник, у которого тупой угол = 120°, острые углы = по 30° каждый.
Решение 1. Меньшая диагональ правильного шестиугольника в √3 раз больше его стороны (это - свойство правильного шестиугольника), то есть = 5×√3 = 8.6602540378 (см).
Решение 2. Основано на правиле о том, что катет, лежащий против угла в 30°, равен половине гипотенузы. Нарисуй, и сразу все увидишь!
Если провести в правильном шестиугольнике и меньшую, и большую диагонали, то большая диагональ является гипотенузой прямоугольного треугольника, а меньшая диагональ является одним из катетов.
Получается, что нам именно и известен этот самый катет, лежащий напротив угла в 30°, он = 5 см. Тогда гипотенуза - она же большая диагональ, = 10 см. Остаётся по Пифагору найти второй катет (он же меньшая диагональ), х² = 10²-5²; х = √75 = 8.6602540378 (см).