угол между боковой гранью и основанием===угол между высотой боковой грани и высотой основания
и основание пирамиды и боковая грань---правильные треугольники, высота является и медианой
ребро пирамиды обозначим х
из прямоуг.треуг.в основании: x^2 = (x/2)^2 + (высота_основания)^2
(высота_основания)^2 = 3*x^2 / 4
высота основания=высоте боковой грани
по т.косинусов из треугольника со сторонами высота боковой грани---высота основания---ребро пирамиды:
x^2 = 2*(3*x^2 / 4) - 2*3*x^2 / 4 * cosA = 3*x^2 / 2 * (1-cosA)
1-cosA = 2/3
cosA = 1/3
угол между боковой гранью и основанием===угол между высотой боковой грани и высотой основания
и основание пирамиды и боковая грань---правильные треугольники, высота является и медианой
ребро пирамиды обозначим х
из прямоуг.треуг.в основании: x^2 = (x/2)^2 + (высота_основания)^2
(высота_основания)^2 = 3*x^2 / 4
высота основания=высоте боковой грани
по т.косинусов из треугольника со сторонами высота боковой грани---высота основания---ребро пирамиды:
x^2 = 2*(3*x^2 / 4) - 2*3*x^2 / 4 * cosA = 3*x^2 / 2 * (1-cosA)
1-cosA = 2/3
cosA = 1/3
2) Радиус описанной около квадрата окружности равен R=a√2/2=5√2/2, следовательно, l=2*5√2/2*П=5√2П. Если окружность вписана, то ее радиус = 1/2 стороны, т.е. r=2.5, значит l=2*2.5*П=5П.
3) Радиус описанной около 6-угольника окружности = стороне, l=2*10*П=20П. Радиус вписанной в 6-угольник окружности можно найти по формуле r=√3/2*R; r=√3/2*10=5√3 (см), l=2*5√3*П=10√3П.