АВСД - прямоугольник. О - пересечение диагоналей ОК срединный перпендикуляр к диагонали ВД. Тогда по условию: КС = СД.
То есть тр. ДКС - прям, равноб. Значит его острые углы - по 45 гр.
СДК = 45 гр = ДКС
Угол ДКС - внешний для равнобедр. тр-ка ВКД (КД = ВК - по св-ву срединного перпенд)Значит: 2*КДВ = 45 гр.
Или угол КДВ = 22,5 гр.
Тогда угол СДО в тр. СОД равен:
СДО = 45 + 22,5 = 67,5 гр и равен ОСД (т.к тр.СОД - равнобедр)
В итоге находим искомый угол СОД = 180 - (67,5 + 67,5) = 45 гр.
ответ: 45 гр(острый) или 135 гр (тупой)
Рассмотрим ΔAED. Так как АЕ=ЕD, то он равнобедренный с основанием AD. У равнобедренного треугольника углы при основании равны => ∠EAD=∠EDA=32°.
Сумма углов треугольника равна 180°. Значит, ∠EAD+∠EDA+∠AED=180°.
Отсюда ∠AED=180°-∠EAD-∠EDA=180°-32°-32°=116°.